Advanced Search
Article Contents

A Regional Climate Model Simulation of Summer Monsoon over East Asia: A Case Study of 1991 Flood in Yangtze-Huai River Valley


doi: 10.1007/s00376-998-0027-3

  • The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Regional Climate Models should be a better way to simulate the summer monsoon evolution, because not only they can reflect the large-scale forcing through boundary condition, theirs high resolution can also catch regional-scale forcing in de-tail. To evaluate the ability of SUNYA-ReCM to simulate the evolution of the summer monsoon over East Asia es-pecially in the extreme climate, a simulation of the East Asian flood that occurred during 1991 summer was per-formed. This simulation was driven by large-scale atmospheric background derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Tropic Ocean Global Atmospheric (TOGA) analysis. The model is capable of reproducing the major features of the monthly mean monsoon circulation, anomalous rainfall in the Yangtze-Huai River Valley and the two northward jumps of rainfall belt as well as the other large-scale components of the monsoon. The changes of the large-scale circulation during the evolution of summer monsoon are also well simulated, which include: (1) the wind direction changes from southeasterly to southwesterly in the South China Sea. (2) The northward shift of the upper westerly over East China and the Tibetan Plateau. (3) The northward shift of the western Pacific subtropic high at 500 hPa. The model also has a good simulation on the evolution of the regional-scale components of the monsoon, including Meiyu front and southwest (SW) vortex in Sichuan Basin.
  • [1] C. H. So, Johnny C. L. Chan, 1997: Regional and Synoptic-scale Features Associated with Inactive Periods of the Summer Monsoon over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 223-230.  doi: 10.1007/s00376-997-0021-1
    [2] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [3] Gao Xuejie, Zhao Zongci, Ding Yihui, Huang Ronghui, Filippo Giorgi, 2001: Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1224-1230.  doi: 10.1007/s00376-001-0036-y
    [4] Koji DAIRAKU, Seita EMORI, Toru NOZAWA, 2008: Impacts of Global Warming on Hydrological Cycles in the Asian Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 960-973.  doi: 10.1007/s00376-008-0960-1
    [5] Yu Rucong, Zhang Minghua, Yu Yongqiang, Liu Yimin, 2001: Summer Monsoon Rainfalls over Mid-Eastern China Lagged Correlated with Global SSTs, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 179-196.  doi: 10.1007/s00376-001-0012-6
    [6] LIU Yanju, DING Yihui, 2007: Sensitivity Study of the South China Sea Summer Monsoon in 1998 to Different Cumulus arameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 360-376.  doi: 10.1007/s00376-007-0360-y
    [7] Wang Qianqian, Qian Yongfu, 1996: Effects of Land-Sea Distribution, Topography and Diurnal Change on Summer Monsoon Modeling, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 253-259.  doi: 10.1007/BF02656867
    [8] Swati Basu, K. J. Ramesh, Z. N. Begum, 1999: Medium Range Prediction of Summer Monsoon Activities over India vis-a-vis Their Correspondence with the Observational Features, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 133-146.  doi: 10.1007/s00376-999-0009-0
    [9] Jing ZOU, Zhenghui XIE, Chesheng ZHAN, Feng CHEN, Peihua QIN, Tong HU, Jinbo XIE, 2019: Coupling of a Regional Climate Model with a Crop Development Model and Evaluation of the Coupled Model across China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 527-540.  doi: 10.1007/s00376-018-8160-0
    [10] SHI Xueli, XIE Zhenghui, LIU Yiming, YANG Hongwei, 2007: Implementation of a Surface Runoff Model with Horton and Dunne Mechanisms into the Regional Climate Model RegCM_NCC, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 750-764.  doi: 10.1007/s00376-007-0750-1
    [11] GAO Xuejie, LUO Yong, LIN Wantao, ZHAO Zongci, Filippo GIORGI, 2003: Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 583-592.  doi: 10.1007/BF02915501
    [12] DING Yihui, HE Chun, 2006: The Summer Monsoon Onset over the Tropical Eastern Indian Ocean: The Earliest Onset Process of the Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 940-950.  doi: 10.1007/s00376-006-0940-2
    [13] Liu Huaqiang, Qian Yongfu, Zheng Yiqun, 2002: Effects of Nested Area Size upon Regional Climate Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 111-120.  doi: 10.1007/s00376-002-0038-4
    [14] ZONG Huijun, WU Liguang, 2015: Re-examination of Tropical Cyclone Formation in Monsoon Troughs over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 924-934.  doi: 10.1007/s00376-014-4115-2
    [15] DING Yihui, SHI Xueli, LIU Yiming, LIU Yan, LI Qingquan, QIAN Yongfu, MIAO Manqian, ZHAI Guoqing, GAO Kun, 2006: Multi-year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM NCC). Part I: Sensitivity Study, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 323-341.  doi: 10.1007/s00376-006-0487-2
    [16] CHEN Feng, and XIE Zhenghui, 2013: An evaluation of RegCM3_CRES for regional climate modeling in China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1187-1200.  doi: 10.1007/s00376-012-2114-8
    [17] Peihua QIN, Zhenghui XIE, Jing ZOU, Shuang LIU, Si CHEN, 2021: Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 460-479.  doi: 10.1007/s00376-020-0141-4
    [18] ZENG Xinmin, LIU Jinbo, MA Zhuguo, SONG Shuai, XI Chaoli, WANG Hanjie, 2010: Study on the Effects of Land Surface Heterogeneitiesin Temperature and Moisture on Annual Scale Regional Climate Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 154-163.  doi: 10.1007/s00376-009-8117-4
    [19] Gao Xuejie, Zhao Zongci, Filippo Giorgi, 2002: Changes of Extreme Events in Regional Climate Simulations over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 927-942.  doi: 10.1007/s00376-002-0056-2
    [20] XIN Yufei, Annette RINKE, BIAN Lingen, Klaus DETHLOFF, XIAO Cunde, Moritz MIELKE, 2010: Climate and Forecast Mode Simulations for Antarctica: Implications for Temperature and Wind, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1453-1472.  doi: 10.1007/s00376-010-9178-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1998
Manuscript revised: 10 October 1998
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Regional Climate Model Simulation of Summer Monsoon over East Asia: A Case Study of 1991 Flood in Yangtze-Huai River Valley

  • 1. START Regional Center for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Atmospheric Sciences Research Center, State University of New York, Albany, New York NY12205, USA

Abstract: The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Regional Climate Models should be a better way to simulate the summer monsoon evolution, because not only they can reflect the large-scale forcing through boundary condition, theirs high resolution can also catch regional-scale forcing in de-tail. To evaluate the ability of SUNYA-ReCM to simulate the evolution of the summer monsoon over East Asia es-pecially in the extreme climate, a simulation of the East Asian flood that occurred during 1991 summer was per-formed. This simulation was driven by large-scale atmospheric background derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Tropic Ocean Global Atmospheric (TOGA) analysis. The model is capable of reproducing the major features of the monthly mean monsoon circulation, anomalous rainfall in the Yangtze-Huai River Valley and the two northward jumps of rainfall belt as well as the other large-scale components of the monsoon. The changes of the large-scale circulation during the evolution of summer monsoon are also well simulated, which include: (1) the wind direction changes from southeasterly to southwesterly in the South China Sea. (2) The northward shift of the upper westerly over East China and the Tibetan Plateau. (3) The northward shift of the western Pacific subtropic high at 500 hPa. The model also has a good simulation on the evolution of the regional-scale components of the monsoon, including Meiyu front and southwest (SW) vortex in Sichuan Basin.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return