Advanced Search
Article Contents

The Space and Time Features of Global SST Anomalies Studied by Complex Principal Component Analysis


doi: 10.1007/s00376-999-0001-8

  • In this paper, the variability characteristics of the global field of sea surface temperature (SST) anomaly are studied by complex principal component (c.p.c.) analysis, whose results are also com?pared with those of real p.c. analysis. The data consist of 40 years of global SST monthly averages over latitudes from 42.5oS to 67.5oN. In the spatial domain, it is found that the distribution of the first complex loading amplitude is characterized by three areas of large values: the first one in the eastern and central equatorial Pacific Ocean, the second one in the northern tropical Indian Ocean and South China Sea, the third one in the northern Pacific Ocean. As it will be explained, this pat?tern may be considered as representative of El Ni?o mode. The first complex loading phase pattern shows a stationary wave in the Pacific (also revealed by real p.c. analysis) superimposed to an oscil?lating disturbance, propagating from the Pacific to Indian or the opposite way. A subsequent cor?relation analysis among different spatial points allows revealing disturbances actually propagating westward from the Pacific to the Indian Ocean, which could therefore represent reflected Rossby waves, i.e. the west phase of the signals that propagate disturbances of thermal structure in the tropical Pacific Ocean. In the time domain, a relation between the trend of the first complex prin?cipal component and the ENSO cycle is also established.
  • [1] Xinyi XING, Xianghui FANG, Da PANG, Chaopeng JI, 2024: Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 465-477.  doi: 10.1007/s00376-023-3005-x
    [2] LI Gang*, LI Chongyin, TAN Yanke, and BAI Tao, 2014: The Interdecadal Changes of South Pacific Sea Surface Temperature in the Mid-1990s and Their Connections with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 66-84.  doi: 10.1007/s00376-013-2280-3
    [3] Yadi LI, Xichen LI, Juan FENG, Yi ZHOU, Wenzhu WANG, Yurong HOU, 2024: Uncertainties of ENSO-related Regional Hadley Circulation Anomalies within Eight Reanalysis Datasets, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 115-140.  doi: 10.1007/s00376-023-3047-0
    [4] Jingrui YAN, Wenjun ZHANG, Suqiong HU, Feng JIANG, 2024: Different ENSO Impacts on Eastern China Precipitation Patterns in Early and Late Winter Associated with Seasonally-Varying Kuroshio Anticyclonic Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3196-1
    [5] Ning JIANG, Congwen ZHU, 2021: Seasonal Forecast of South China Sea Summer Monsoon Onset Disturbed by Cold Tongue La Niña in the Past Decade, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 147-155.  doi: 10.1007/s00376-020-0090-y
    [6] Yang AI, Ning JIANG, Weihong QIAN, Jeremy Cheuk-Hin LEUNG, Yanying CHEN, 2022: Strengthened Regulation of the Onset of the South China Sea Summer Monsoon by the Northwest Indian Ocean Warming in the Past Decade, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 943-952.  doi: 10.1007/s00376-021-1364-8
    [7] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [8] WANG Zhiren, WU Dexing, CHEN Xue'en, QIAO Ran, 2013: ENSO Indices and Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1491-1506.  doi: 10.1007/s00376-012-2238-x
    [9] Xiaofei WU, Jiangyu MAO, 2019: Decadal Changes in Interannual Dependence of the Bay of Bengal Summer Monsoon Onset on ENSO Modulated by the Pacific Decadal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1404-1416.  doi: 10.1007/s00376-019-9043-8
    [10] Yuanhai FU, Zhongda LIN, Tao WANG, 2021: Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 221-236.  doi: 10.1007/s00376-020-0147-y
    [11] ZHENG Fei, ZHU Jiang, Rong-Hua ZHANG, ZHOU Guangqing, 2006: Improved ENSO Forecasts by Assimilating Sea Surface Temperature Observations into an Intermediate Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 615-624.  doi: 10.1007/s00376-006-0615-z
    [12] Zhou Tianjun, Yu Rucong, Li Zhaoxin, 2002: ENSO-Dependent and ENSO-Independent Variability over the Mid-Latitude North Pacific: Observation and Air-Sea Coupled Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1127-1147.  doi: 10.1007/s00376-002-0070-4
    [13] Shang-Ping XIE, Yu KOSAKA, Yan DU, Kaiming HU, Jasti S. CHOWDARY, Gang HUANG, 2016: Indo-Western Pacific Ocean Capacitor and Coherent Climate Anomalies in Post-ENSO Summer: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 411-432.  doi: 10.1007/s00376-015-5192-6
    [14] Shi Neng, Chen Luwen, Xia Dongdong, 2002: A Preliminary Study on the Global Land Annual Precipitation Associated with ENSO during 1948-2000, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 993-1003.  doi: 10.1007/s00376-002-0060-6
    [15] CHEN Shangfeng, CHEN Wen, WEI Ke, 2013: Recent Trends in Winter Temperature Extremes in Eastern China and their Relationship with the Arctic Oscillation and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1712-1724.  doi: 10.1007/s00376-013-2296-8
    [16] HUANG Ping, HUANG Ronghui, 2009: Delayed Atmospheric Temperature Response to ENSO SST: Role of High SST and the Western Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 343-351.  doi: 10.1007/s00376-009-0343-2
    [17] Peng HU, Wen CHEN, Shangfeng CHEN, Lin WANG, Yuyun LIU, 2022: The Weakening Relationship between ENSO and the South China Sea Summer Monsoon Onset in Recent Decades, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 443-455.  doi: 10.1007/s00376-021-1208-6
    [18] ZHOU Lian-Tong, Chi-Yung TAM, ZHOU Wen, Johnny C. L. CHAN, 2010: Influence of South China Sea SST and the ENSO on Winter Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 832-844.  doi: 10.1007/s00376--009-9102-7
    [19] FENG Juan*, CHEN Wen, 2014: Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 344-354.  doi: 10.1007/s00376-013-3118-8
    [20] Fei ZHENG, Jianping LI, Ruiqiang DING, 2017: Influence of the Preceding Austral Summer Southern Hemisphere Annular Mode on the Amplitude of ENSO Decay, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1358-1379.  doi: 10.1007/s00376-017-6339-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1999
Manuscript revised: 10 January 1999
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Space and Time Features of Global SST Anomalies Studied by Complex Principal Component Analysis

  • 1. Dipartimento di Fisica Generale, Universita di Torino, Turin, Italy and lstituto di Cosmogeofisica del CNR, Turin, Italy;ICSC-World Laboratory, Lausanne, Switzerland,Dipartimento di Fisica Generale, Universita di Torino, Turin, Italy and lstituto di Cosmogeofisica del CNR, Turin, Italy;ICSC-World Laboratory, Lausanne, Switzerland,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, and International Centre of Theoretical Physics, Trieste, Italy

Abstract: In this paper, the variability characteristics of the global field of sea surface temperature (SST) anomaly are studied by complex principal component (c.p.c.) analysis, whose results are also com?pared with those of real p.c. analysis. The data consist of 40 years of global SST monthly averages over latitudes from 42.5oS to 67.5oN. In the spatial domain, it is found that the distribution of the first complex loading amplitude is characterized by three areas of large values: the first one in the eastern and central equatorial Pacific Ocean, the second one in the northern tropical Indian Ocean and South China Sea, the third one in the northern Pacific Ocean. As it will be explained, this pat?tern may be considered as representative of El Ni?o mode. The first complex loading phase pattern shows a stationary wave in the Pacific (also revealed by real p.c. analysis) superimposed to an oscil?lating disturbance, propagating from the Pacific to Indian or the opposite way. A subsequent cor?relation analysis among different spatial points allows revealing disturbances actually propagating westward from the Pacific to the Indian Ocean, which could therefore represent reflected Rossby waves, i.e. the west phase of the signals that propagate disturbances of thermal structure in the tropical Pacific Ocean. In the time domain, a relation between the trend of the first complex prin?cipal component and the ENSO cycle is also established.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return