Advanced Search
Article Contents

Retrieval of Tropospheric CO Profiles Using Correlation Radiometer: I. Retrieval Experiments for a Clear Atmosphere


doi: 10.1007/s00376-999-0013-4

  • This paper discusses the retrieval scheme associated with the gas correlated radiometer- MOPITT which will be on board of EOS-AM1 to measure the global vertical profiles of car-bon monoxide. The vertical resolution and retrieval errors caused by errors in the temperature profiles and in the surface temperature have been assessed. The main results are: a. Assuming the noise equivalent radiance (NER) of 1.8 × 105 W m-2 sr-1, the surface tem?perature can be deduced from the wide band signals with uncertainly less than 1 K, and the atmospheric term of the modulated signal can be deduced with errors almost equal to the NER which does not significantly increase errors in the retrieved CO profiles. b. With typical uncertainty in temperature profiles, errors in the retrieved profiles at lati-? tudes lower than 70o are generally less than 20% with the first guess of 100 ppbv. (If a better first guess was used, the errors may decrease). c. By incorporating the total column CO amount derived from the reflected solar radiation in 2.3 μm spectral region into the retrieval, the accuracy of the retrieved CO profile below 6 km may be greatly improved. d. In the retrieval experiment with 10 CO profiles representing the typical CO profiles, the r.m.s. relative / absolute errors of the retrieved CO profiles are about 10% / 15-20 ppbv.
  • [1] Wu Beiying, John Gille, 1999: Retrieval of Tropospheric CO Profiles Using Correlation Radiometer. II: Effects of Other Gases and the Retrieval in Cloudy Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 507-522.  doi: 10.1007/s00376-999-0027-y
    [2] Pucai WANG, N. F. ELANSKY, Yu. M. TIMOFEEV, Gengchen WANG, G. S. GOLITSYN, M. V. MAKAROVA, V. S. RAKITIN, Yu. SHTABKIN, A. I. SKOROKHOD, E. I. GRECHKO, E.V. FOKEEVA, A. N. SAFRONOV, Liang RAN, Ting WANG, 2018: Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 785-795.  doi: 10.1007/s00376-017-6327-8
    [3] Andrei Filei, Aleksei Sorokin, Olga Girina, 2024: Retrieval of Volcanic Sulphate Aerosols Optical Parameters from AHI Radiometer Data, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3105-2
    [4] HUO Yanfeng, DUAN Minzheng, TIAN Wenshou, MIN Qilong, 2015: A Differential Optical Absorption Spectroscopy Method for X CO2 Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1119-1128.  doi: 10.1007/s00376-015-4213-9
    [5] Li Zhenjun, 1998: Estimation of Cloud Motion Using Cross-Correlation, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 277-282.  doi: 10.1007/s00376-998-0046-0
    [6] Zhao Conglong, J. B. Snider, D. C. Hogg, 1986: COMPUTER DEMODULATION TECHNIQUE FOR A DUAL-CHANNEL MICROWAVE RADIOMETER, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 189-198.  doi: 10.1007/BF02682552
    [7] Xiaojuan SUN, Siyan LI, Julian X. L WANG, Panxing WANG, Dong GUO, 2022: A New Method of Significance Testing for Correlation-Coefficient Fields and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 529-535.  doi: 10.1007/s00376-021-1196-6
    [8] SI Fuqi, LIU Jianguo, XIE Pinghua, ZHANG Yujun, LIU Wenqing, Hiroaki KUZE, Nofel LAGROSAS, Nobuo TAKEUCHI, 2006: Correlation Study Between Suspended Particulate Matter and DOAS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 461-467.  doi: 10.1007/s00376-006-0461-z
    [9] Wei Chong, Xue Yongkang, Zhu Xiaoming, Zou Shouxiang, 1984: DETERMINATION OF ATMOSPHERIC PRECIPITABLE WATER AND HUMIDITY PROFILES BY A GROUND-BASED 1.35 cm RADIOMETER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 119-139.  doi: 10.1007/BF03187623
    [10] Lin Hai, Xin Miaoxin, Wei Chong, Hao Yaokui, Zou Shouxiang, 1985: GROUND-BASED REMOTE SENSING OF LWC IN CLOUD AND RAINFALL BY A COMBINED DUAL-WAVELENGTH RADAR-RADIOMETER SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 93-103.  doi: 10.1007/BF03179741
    [11] HONG Gang, Georg HEYGSTER, Klaus KUNZI, LI Wanbiao, ZHU Yuanjing, ZHAO Bolin, 2003: Retrieval of Microwave Surface Emissivities at TMI Frequencies in Shouxian, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 253-259.  doi: 10.1007/s00376-003-0011-x
    [12] ZHANG Jie, Zhenglong LI, Jun LI, Jinglong LI, 2014: Ensemble Retrieval of Atmospheric Temperature Profiles from AIRS, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 559-569.  doi: 10.1007/s00376-013-3094-z
    [13] HUANG Sixun, CAO Xiaoqun, DU Huadong, WANG Tingfang, XIANG Jie, 2006: Retrieval of Atmospheric and Oceanic Parameters and the Relevant Numerical Calculation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 106-117.  doi: 10.1007/s00376-006-0011-8
    [14] Zhang Fengying, Ma Xialin, 1986: CALCULATION OF UPDATED COEFFICIENTS FOR ATMOSPHERIC TEMPERATURE RETRIEVAL, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 150-161.  doi: 10.1007/BF02682549
    [15] Huang Runkeng, Wei Chong, 1986: EXPERIMENTAL INVESTIGATION ON REAL-TIME REMOTE SENSING OF LAYERED ATMOSPHERIC PRECIPITABLE BY A GROUND-BASED RADIOMETER OF 1.35 cm WAVELENGTH, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 86-93.  doi: 10.1007/BF02680047
    [16] WANG Tijian, K. S. LAM, C. W. TSANG, S. C. KOT, 2004: On the Variability and Correlation of Surface Ozone and Carbon Monoxide Observed in Hong Kong Using Trajectory and Regression Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 141-152.  doi: 10.1007/BF02915688
    [17] TANG Yanbing, ZHAO Lu, GAO Kun, 2009: Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1169-1180.  doi: 10.1007/s00376-009-8006-x
    [18] Wu Beiying, Lu Daren, 1984: REMOTE SENSING OF RAINFALL PARAMETERS BY LASER SCINTILLATION CORRELATION METHOD-COMPLETE EQUATION AND NUMERICAL SIMULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 19-39.  doi: 10.1007/BF03187613
    [19] XU Xiangde, ZHOU Li, ZHANG Shengjun, MIAO Qiuju, 2003: Characteristics of the Correlation between Regional Water Vapor Transport along with the Convective Action and Variation of the Pacific Subtropical High in 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 269-283.  doi: 10.1007/s00376-003-0013-8
    [20] Yunji ZHANG, Eugene E. CLOTHIAUX, David J. STENSRUD, 2022: Correlation Structures between Satellite All-Sky Infrared Brightness Temperatures and the Atmospheric State at Storm Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 714-732.  doi: 10.1007/s00376-021-0352-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1999
Manuscript revised: 10 July 1999
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Retrieval of Tropospheric CO Profiles Using Correlation Radiometer: I. Retrieval Experiments for a Clear Atmosphere

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,National Center for Atmospheric Research, P.O. Box 3000, Boulder CO 80307, U.S.A.

Abstract: This paper discusses the retrieval scheme associated with the gas correlated radiometer- MOPITT which will be on board of EOS-AM1 to measure the global vertical profiles of car-bon monoxide. The vertical resolution and retrieval errors caused by errors in the temperature profiles and in the surface temperature have been assessed. The main results are: a. Assuming the noise equivalent radiance (NER) of 1.8 × 105 W m-2 sr-1, the surface tem?perature can be deduced from the wide band signals with uncertainly less than 1 K, and the atmospheric term of the modulated signal can be deduced with errors almost equal to the NER which does not significantly increase errors in the retrieved CO profiles. b. With typical uncertainty in temperature profiles, errors in the retrieved profiles at lati-? tudes lower than 70o are generally less than 20% with the first guess of 100 ppbv. (If a better first guess was used, the errors may decrease). c. By incorporating the total column CO amount derived from the reflected solar radiation in 2.3 μm spectral region into the retrieval, the accuracy of the retrieved CO profile below 6 km may be greatly improved. d. In the retrieval experiment with 10 CO profiles representing the typical CO profiles, the r.m.s. relative / absolute errors of the retrieved CO profiles are about 10% / 15-20 ppbv.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return