Advanced Search
Article Contents

Dynamics of Absolute Vorticity in the Boussinesq Fluid


doi: 10.1007/s00376-999-0025-0

  • The dynamics of absolute vorticity in the Boussinesq fluid is examined. It is shown that the Boussinesq approximation only captures one of the horizontal components of the solenoidal term. Based on scaling ana-lysis of typical midlatitude synoptic systems, the horizontal component of the solenoidal term neglected by the Boussinesq approximation is at least of the same order of magnitude as the one captured by the Boussinesq approximation. This leads to severe underestimation of absolute vorticity and circulation.
  • [1] T. S. Spassova, 1992: A Theoretical Test of the Geostrophic Momentum Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 251-255.  doi: 10.1007/BF02657516
    [2] Gao Shouting, Lei Ting, 2000: Streamwise Vorticity Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 339-347.  doi: 10.1007/s00376-000-0027-4
    [3] Brian HOSKINS, 2015: Potential Vorticity and the PV Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 2-9.  doi: 10.1007/s00376-014-0007-8
    [4] Zhang Xuehong, 1985: THE SECOND ORDER APPROXIMATION TO THE NONLINEAR WAVE IN BAROTROPIC ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 167-177.  doi: 10.1007/BF03179749
    [5] YE Liming, YANG Guixia, Eric VAN RANST, TANG Huajun, 2013: Time-Series Modeling and Prediction of Global Monthly Absolute Temperature for Environmental Decision Making, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 382-396.  doi: 10.1007/s00376-012-1252-3
    [6] Ren Shuzhan, 1994: Symmetric Stability of Rotation and Boussinesq Fluid in Bounded Domain by Using Normal Mode Method, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 291-295.  doi: 10.1007/BF02658148
    [7] ZHAO Kun, LIU Guoqing, GE Wenzhong, DANG Renqing, Takao TAKEDA, 2003: Retrieval of Single-Doppler Radar Wind Field by Nonlinear Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 195-204.  doi: 10.1007/s00376-003-0004-9
    [8] Tan Zhemin, Wang Yuan, 2002: Wind Structure in an Intermediate Boundary Layer Model Based on Ekman Momentum Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 266-278.  doi: 10.1007/s00376-002-0021-0
    [9] He Jianzhong, 1993: Linear Momentum Approximation and Frontogenesis Caused by Baroclinic Ekman Momentum Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 103-112.  doi: 10.1007/BF02656958
    [10] Zhao Ming, 1988: A NUMERICAL EXPERIMENT OF THE PBL WITH GEO-STROPHIC MOMENTUM APPROXIMATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 47-56.  doi: 10.1007/BF02657345
    [11] Zuohao CAO, Da-Lin ZHANG, 2004: Tracking Surface Cyclones with Moist Potential Vorticity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 830-835.  doi: 10.1007/BF02916379
    [12] Fang Juan, Wu Rongsheng, 1998: Influences of Vorticity Source and Momentum Source on Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 41-46.  doi: 10.1007/s00376-998-0016-6
    [13] Chanh Q. KIEU, Da-Lin ZHANG, 2012: Is the Isentropic Surface Always Impermeable to the Potential Vorticity Substance?, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 29-35.  doi: 10.1007/s00376-011-0227-0
    [14] CUI Xiaopeng, GAO Shouting, WU Guoxiong, 2003: Up-Sliding Slantwise Vorticity Development and the Complete Vorticity Equation with Mass Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 825-836.  doi: 10.1007/BF02915408
    [15] F. Momo TEMGOUA, L. Akana NGUIMDO, D. NJOMO, 2024: Two-Stream Approximation to the Radiative Transfer Equation: A New Improvement and Comparative Accuracy with Existing Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 278-292.  doi: 10.1007/s00376-023-2257-9
    [16] Wu Rongsheng, 1985: THE INFLUENCES OF OROGRAPHY UPON THE FLOW WITHIN EKMAN BOUNDARY LAYER UNDER THE APPROXIMATION OF GEOSTROPHIC MOMENTUM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 1-7.  doi: 10.1007/BF03179731
    [17] Zhao Ming, 1988: THE NUMERICAL EXPERIMENTS ON APPLICATING GEOSTROPHIC MOMENTUM APPROXIMATION TO THE BAROCLINIC AND NON-NEUTRAL PBL, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 287-300.  doi: 10.1007/BF02656753
    [18] Gang LI, Daoyong YANG, Xiaohua JIANG, Jing PAN, Yanke TAN, 2017: Diagnosis of Moist Vorticity and Moist Divergence for a Heavy Precipitation Event in Southwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 88-100.  doi: 10.1007/s00376-016-6124-9
    [19] Zuohao CAO, Da-Lin ZHANG, 2005: Sensitivity of Cyclone Tracks to the Initial Moisture Distribution: A Moist Potential Vorticity Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 807-820.  doi: 10.1007/BF02918681
    [20] REN Rongcai, Ming CAI, 2006: Polar Vortex Oscillation Viewed in an Isentropic Potential Vorticity Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 884-900.  doi: 10.1007/s00376-006-0884-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1999
Manuscript revised: 10 July 1999
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Dynamics of Absolute Vorticity in the Boussinesq Fluid

  • 1. Climate Research Branch, Atmospheric Environment Service, Downsview, Ontario, Canada

Abstract: The dynamics of absolute vorticity in the Boussinesq fluid is examined. It is shown that the Boussinesq approximation only captures one of the horizontal components of the solenoidal term. Based on scaling ana-lysis of typical midlatitude synoptic systems, the horizontal component of the solenoidal term neglected by the Boussinesq approximation is at least of the same order of magnitude as the one captured by the Boussinesq approximation. This leads to severe underestimation of absolute vorticity and circulation.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return