Advanced Search
Article Contents

Diagnostic Study on Seasonality and Interannual Variability of Wind Field


doi: 10.1007/s00376-999-0029-9

  • Based on NCEP / NCAR reanalysis data during 1980-1994, seasonally and interannual va-riability of the horizontal wind field are studied. It is shown that: (1) In the lower troposphere, there exist regions with maximum of seasonality in the tropics, the subtropics and high latitudes, which is called the tropical, subtropical and temperate-frigid monsoon region respectively. In the upper troposphere, the subtropical monsoon combines with the tropical monsoon as a nonseparably planetary monsoon system. In the stratosphere, there is a belt with very large seasonality in each hemisphere caused by the inversely seasonal circulation and by the establish-ment and collapse of the night jet. (2) Seasonal variation of the large-scale monsoon may generally be attributed to that of the zonal wind, however, seasonal variation of the meridional wind is of great importance in East Asian monsoon region. (3) In monsoon region, interannual variability of the atmospheric general circulation is closely related to seasonal variation of monsoon, while in the tropical Pacific, it may considerably be influenced by the external factors such as sea surface tem-perature (SST) anomalies associated with El Nino or La Nina event. Moreover, interannual variability undergoes a pronounced annual cycle.
  • [1] GUAN Zhaoyong, LU Chuhan, MEI Shilong, CONG Jing, 2010: Seasonality of Interannual Inter-hemispheric Oscillations over the Past Five Decades, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1043-1050.  doi: 10.1007/s00376-009-9126-z
    [2] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [3] Xue Feng, Bi Xunqiang, Lin Yihua, 2001: Modelling the Global Monsoon System by IAP 9L AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 404-412.  doi: 10.1007/BF02919319
    [4] Qian Weihong, Zhu Yafen, Xie An, Ye Qian, 1998: Seasonal and Interannual Variations of Upper Tropospheric Water Vapor Band Brightness Temperature over the Global Monsoon Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 337-345.  doi: 10.1007/s00376-998-0005-9
    [5] Hu Zengzhen, Tsuyoshi Nitta, 1997: Seasonality of the Interaction between Convection over the Western Pacific and General Circulation in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 541-553.  doi: 10.1007/s00376-997-0072-3
    [6] XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun, 2015: Recent Advances in Monsoon Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 206-229.  doi: 10.1007/s00376-014-0015-8
    [7] Ya GAO, Huijun WANG, Dong CHEN, 2017: Interdecadal Variations of the South Asian Summer Monsoon Circulation Variability and the Associated Sea Surface Temperatures on Interannual Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 816-832.  doi: 10.1007/ s00376-017-6246-8
    [8] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [9] ZENG Heqing, JIA Gensuo, 2013: Impacts of Snow Cover on Vegetation Phenology in the Arctic from Satellite Data, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1421-1432.  doi: 10.1007/s00376-012-2173-x
    [10] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [11] Wu Aiming, Ni Yunqi, 1997: The Influence of Tibetan Plateau on the Interannual Variability of Atmospheric Circulation over Tropical Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 69-80.  doi: 10.1007/s00376-997-0045-6
    [12] LI Fei, WANG Huijun, 2012: Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 441-454.  doi: 10.1007/s00376-011-1115-3
    [13] Ji Liren, Sun Shuqing, Klaus Arpe, Lennart Benglsson, 1997: Model Study on the Interannual Variability of Asian Winter Monsoon and Its Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 1-22.  doi: 10.1007/s00376-997-0039-4
    [14] CHEN Guanghua, HUANG Ronghui, 2008: Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 319-328.  doi: 10.1007/s00376-008-0319-7
    [15] Jong-Suk KIM, ZHOU Wen, Ho Nam CHEUNG, Chak Hang CHOW, 2013: Variability and Risk Analysis of Hong Kong Air Quality Based on Monsoon and El Nino Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 280-290.  doi: 10.1007/s00376-012-2074-z
    [16] Ren Baohua, Huang Ronghui, 1999: Interannual Variability of the Convective Activities Associated with the East Asian Summer Monsoon Obtained from TBB Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 77-90.  doi: 10.1007/s00376-999-0005-4
    [17] HU Ruijin, LIU Qinyu, WANG Qi, J. Stuart GODFREY, MENG Xiangfeng, 2005: The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 220-229.  doi: 10.1007/BF02918511
    [18] NIU Ning, LI Jianping, 2008: Interannual Variability of Autumn Precipitation over South China and its Relation to Atmospheric Circulation and SST Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 117-125.  doi: 10.1007/s00376-008-0117-2
    [19] FU Yuanhai, LU Riyu, 2010: Simulated Change in the Interannual Variability of South Asian Summer Monsoon in the 21st Century, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 992-1002.  doi: 10.1007/s00376-009-9124-1
    [20] P. L. S. Rao, 2000: The Influence of Systematic Errors on the Asian Summer Monsoon Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 576-586.  doi: 10.1007/s00376-000-0021-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1999
Manuscript revised: 10 October 1999
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Diagnostic Study on Seasonality and Interannual Variability of Wind Field

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Based on NCEP / NCAR reanalysis data during 1980-1994, seasonally and interannual va-riability of the horizontal wind field are studied. It is shown that: (1) In the lower troposphere, there exist regions with maximum of seasonality in the tropics, the subtropics and high latitudes, which is called the tropical, subtropical and temperate-frigid monsoon region respectively. In the upper troposphere, the subtropical monsoon combines with the tropical monsoon as a nonseparably planetary monsoon system. In the stratosphere, there is a belt with very large seasonality in each hemisphere caused by the inversely seasonal circulation and by the establish-ment and collapse of the night jet. (2) Seasonal variation of the large-scale monsoon may generally be attributed to that of the zonal wind, however, seasonal variation of the meridional wind is of great importance in East Asian monsoon region. (3) In monsoon region, interannual variability of the atmospheric general circulation is closely related to seasonal variation of monsoon, while in the tropical Pacific, it may considerably be influenced by the external factors such as sea surface tem-perature (SST) anomalies associated with El Nino or La Nina event. Moreover, interannual variability undergoes a pronounced annual cycle.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return