Advanced Search
Article Contents

The Heat Balance in the Western Equatorial Pacific Warm Pool during the Westerly Wind Bursts: A Case Study

  • The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the west erly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using da ta collected from eight buoys of TOGA (Tropical Ocean-Global Atmosphere)-COARE (Coupled Ocean-Atmosphere Response Experiment), the heat balances of the upper ocean in the western equatorial Pacific around 0. 156E during two WWB events were calculated according to Stevenson and Niiler's (1983) method. In both events, SST increased before and after the WWBs, while decreased within the WWBs. The SST amplitudes approximated to l℃. Although sometimes the horizontal heat advections may become the biggest term in the heat balance, the variation of SST was dominated by the surface heat flux. On the other aspect, some different features of the two events are also revealed. The two cases have different variation of mixed layer depth. The depth of mixed layer is almost double in the first case (35 m to 70 m), which is caused by Ekman convergence, while only 10m increments due to entrainment in the second one. There are also differences in the currents structure. The different variations of thermal and currents struc ture in the mixing layers accounted for the different variation of the heat balance during the two events, es pecially the advection and residue terms. The seasonal variation of SST in this area is also investigated sim ply. The first WWB event happened just during the seasonal transition. So we considered that it is a normal season transition rather than a so-called anomaly. That also suggested that the seasonal distinction of the WWB is worthy of more attention in the researches of its relationship to ENSO.
  • [1] ZHU Congwen, Tetsuo NAKAZAWA, LI Jianping, 2003: Modulation of Twin Tropical Cyclogenesis by the MJO Westerly Wind Burst during the Onset Period of 1997/98 ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 882-898.  doi: 10.1007/BF02915512
    [2] Li Chongyin, Mu Mingquan, Zhou Guangqing, 1999: The Variation of Warm Pool in the Equatorial Western Pacific and Its Impacts on Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 378-394.  doi: 10.1007/s00376-999-0017-0
    [3] SUN Yan, De-Zheng SUN, WU Lixin, and WANG Fan, 2013: Western Pacific Warm Pool and ENSO Asymmetry in CMIP3 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 940-953.  doi: 10.1007/s00376-012-2161-1
    [4] GAN Bolan, WU Lixin, 2012: Possible Origins of the Western Pacific Warm Pool Decadal Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 169-176.  doi: 10.1007/s00376-011-0193-6
    [5] YUAN Zhuojian, QIAN Yu-Kun, QI Jindian, WU Junjie, 2012: The Potential Impacts of Warmer-Continent-Related Lower-Layer Equatorial Westerly Wind on Tropical Cyclone Initiation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 333-343.  doi: 10.1007/s00376-011-1100-x
    [6] ZHANG Rong-Hua, PEI Yuhua, CHEN Dake, 2013: Remote Effects of Tropical Cyclone Wind Forcing over the Western Pacific on the Eastern Equatorial Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1507-1525.  doi: 10.1007/s00376-013-2283-0
    [7] Minmin WU, Xugang PENG, Baiyang CHEN, Lei WANG, Jinwen WENG, Weijian LUO, 2023: Recent Enhancement in Co-Variability of the Western North Pacific Summer Monsoon and the Equatorial Zonal Wind, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1597-1616.  doi: 10.1007/s00376-023-2215-6
    [8] Lu Riyu, 2001: Atmospheric Circulations and Sea Surface Temperatures Related to the Convection over the Western Pacific Warm Pool on the Interannual Scale, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 270-282.  doi: 10.1007/s00376-001-0019-z
    [9] CHEN Guanghua, HUANG Ronghui, 2008: Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 319-328.  doi: 10.1007/s00376-008-0319-7
    [10] Zhu Qiangen, Hu Jianglin, 1995: Effects on Asian Monsoon of Gigantic Qinghai-Xizang Plateau and Western Pacific Warm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 351-360.  doi: 10.1007/BF02656984
    [11] Ren Baohua, Huang Ronghui, 2002: 10-25-Day Intraseasonal Variations of Convection and Circulation Associated with Thermal State of the Western Pacific Warm Pool during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 321-336.  doi: 10.1007/s00376-002-0025-9
    [12] REN Baohua, HUANG Ronghui, 2003: 30-60-day Oscillations of Convection and Circulation Associated with the Thermal State of the Western Pacific Warm Pool during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 781-793.  doi: 10.1007/BF02915403
    [13] BAO Ming, 2008: Relationship Between Persistent Heavy Rain Events in the Huaihe River Valley and the Distribution Pattern of Convective Activities in the Tropical Western Pacific Warm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 329-338.  doi: 10.1007/s00376-008-0329-5
    [14] Li Wei, Yu Rucong, Liu Hailong, Yu Yongqiang, 2001: Impacts of Diurnal Cycle of SST on the Intraseasonal Variation of Surface Heat Flux over the Western PacificWarm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 793-806.
    [15] LIU Xiangcui, LIU Hailong, 2014: Heat Budget of the South-Central Equatorial Pacific in CMIP3 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 669-680.  doi: 10.1007/s00376-013-2299-5
    [16] Paxson K. Y. CHEUNG, Wen ZHOU, Dongxiao WANG, Marco Y. T. LEUNG, 2022: Dissimilarity among Ocean Reanalyses in Equatorial Pacific Upper-Ocean Heat Content and Its Relationship with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 67-79.  doi: 10.1007/s00376-021-1109-8
    [17] Xinyu LI, Riyu LU, Gen LI, 2021: Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 931-942.  doi: 10.1007/s00376-021-0339-0
    [18] Long Baosen, 1989: The Latent and Sensible Heat Fluxes over the Western Tropical Pacific and Its Relationship to ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 467-474.  doi: 10.1007/BF02659080
    [19] Xianghui FANG, Fei ZHENG, Kexin LI, Zeng-Zhen HU, Hongli REN, Jie WU, Xingrong CHEN, Weiren LAN, Yuan YUAN, Licheng FENG, Qifa CAI, Jiang ZHU, 2023: Will the Historic Southeasterly Wind over the Equatorial Pacific in March 2022 Trigger a Third-year La Niña Event?, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 6-13.  doi: 10.1007/s00376-022-2147-6
    [20] ZHU Jieshun, SUN Zhaobo, ZHOU Guangqing, 2007: A Note on the Role of Meridional Wind Stress Anomalies and Heat Flux in ENSO Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 729-738.  doi: 10.1007/s00376-007-0729-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2001
Manuscript revised: 10 September 2001
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Heat Balance in the Western Equatorial Pacific Warm Pool during the Westerly Wind Bursts: A Case Study

  • 1. LASG, Institute of Atmospheric Physics, Beijing 100029,LASG, Institute of Atmospheric Physics, Beijing 100029,LASG, Institute of Atmospheric Physics, Beijing 100029

Abstract: The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the west erly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using da ta collected from eight buoys of TOGA (Tropical Ocean-Global Atmosphere)-COARE (Coupled Ocean-Atmosphere Response Experiment), the heat balances of the upper ocean in the western equatorial Pacific around 0. 156E during two WWB events were calculated according to Stevenson and Niiler's (1983) method. In both events, SST increased before and after the WWBs, while decreased within the WWBs. The SST amplitudes approximated to l℃. Although sometimes the horizontal heat advections may become the biggest term in the heat balance, the variation of SST was dominated by the surface heat flux. On the other aspect, some different features of the two events are also revealed. The two cases have different variation of mixed layer depth. The depth of mixed layer is almost double in the first case (35 m to 70 m), which is caused by Ekman convergence, while only 10m increments due to entrainment in the second one. There are also differences in the currents structure. The different variations of thermal and currents struc ture in the mixing layers accounted for the different variation of the heat balance during the two events, es pecially the advection and residue terms. The seasonal variation of SST in this area is also investigated sim ply. The first WWB event happened just during the seasonal transition. So we considered that it is a normal season transition rather than a so-called anomaly. That also suggested that the seasonal distinction of the WWB is worthy of more attention in the researches of its relationship to ENSO.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return