高级检索
张小玲, 余蓉, 杜牧云. 梅雨锋上短时强降水系统的发展模态[J]. 大气科学, 2014, 38(4): 770-781. DOI: 10.3878/j.issn.1006-9895.1401.13249
引用本文: 张小玲, 余蓉, 杜牧云. 梅雨锋上短时强降水系统的发展模态[J]. 大气科学, 2014, 38(4): 770-781. DOI: 10.3878/j.issn.1006-9895.1401.13249
ZHANG Xiaoling, YU Rong, DU Muyun. Evolution Pattern of Short-Time Intense Precipitation-Producing Systems Associated with Meiyu Front[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 770-781. DOI: 10.3878/j.issn.1006-9895.1401.13249
Citation: ZHANG Xiaoling, YU Rong, DU Muyun. Evolution Pattern of Short-Time Intense Precipitation-Producing Systems Associated with Meiyu Front[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 770-781. DOI: 10.3878/j.issn.1006-9895.1401.13249

梅雨锋上短时强降水系统的发展模态

Evolution Pattern of Short-Time Intense Precipitation-Producing Systems Associated with Meiyu Front

  • 摘要: 利用2010、2011年5~7月我国东部地区梅雨锋盛行期的58次强降水个例,对产生短时强降水的中尺度对流系统回波演变模态及其系统特征进行了统计分析。本文中短时强降水特指小时降水超过30 mm。结果表明,与梅雨锋相伴的短时强降水系统回波演变模态主要为纬向型、经向型、转向型和合并型四类。纬向型、经向型和70%的转向型发展模态中中尺度对流系统(MCS)呈线状,合并型则主要为卵状。纬向型、转向型和合并型MCS以后向传播为主,但它们的生命史、移速和产生强降水持续时间有很大差别:纬向型生命史最长,强降水持续时间比转向型短;三类发展模态中转向型移速最快,生命史较纬向型短,但强降水持续时间最长;合并型移动最慢,生命史最短,强降水持续时间也最短。经向型MCS前向传播为主,移动最快,系统持续史短,约为纬向型的一半,30 mm h-1、50 mm h-1以上强降水持续时间约为转向型的1/3和1/5。纬向型MCS可向东或向南移动,经向型MCS通常向东或向西运动,合并型MCS可往任意方向移动,并且只有该发展模态中MCS会向北运动。虽然转向型MCS带来的短时强降水(尤其50 mm h-1以上)持续时间最长,经向型和合并型MCS产生短时强降水持续时间短,但四类发展模态中MCS的回波强度和回波高度的统计特征无明显区别。推测强降水持续时间可能与MCS的传播关系更加密切:经向型和合并型MCS前向传播占很大比重,生命史和产生的强降水更短;转向型和纬向型MCS的后向传播比重大,尤其转向型中不存在前向传播,对应短时强降水持续时间最长。

     

    Abstract: In this paper, we study the radar echo evolution patterns and other features of short-term intense precipitation-producing mesoscale convective systems (MCSs) by examining 58 heavy rainfall events associated with the Meiyu front in East China during May to July in 2010 and 2011. Short-term intense precipitation events are deemed as such when the 1-h precipitation total exceeds 30 mm. The results show that the four most common radar echo evolution patterns of MCSs leading to short-term intense precipitation are the zonal, meridional, turning (from zonal to meridional), and combined patterns. MCSs are linear in the zonal and meridional patterns and in 70% of the turning pattern, whereas the combined pattern is oval. Although MCSs in the zonal pattern, turning pattern, and combined patterns commonly propagate backward, the characteristics of their lifetimes, movement, and durations differ significantly. In the zonal pattern, the lifetime is longest, and the intense precipitation duration is shorter than that in the turning pattern in which MCS movement is fastest and the intense precipitation duration is longest. In the combined pattern, MCS movement is slowest and the lifetime and duration are shortest. Conversely, MCSs in the meridional pattern commonly propagate forward and move more quickly than those in the other three patterns. Their lifetime is approximately half that of the zonal pattern, and their duration with more than 30 and 50 mm h-1 precipitation approximately are one-third and one-fifth of those in the turning patterns, respectively. MCSs move eastward or southward in the zonal pattern, eastward or westward in the meridional pattern, and toward all directions in the combined pattern. That is, MCSs can move northward only in the combined pattern. Although the intense precipitation persistence is long-or short-term in the four patterns, differences in radar echo intensity and radar echo depth are rare. It is deduced that the intense precipitation duration is closely related to propagation type. A larger proportion of forward propagation corresponds to a shorter lifetime and shorter duration in the meridional and combined patterns; similarly, a larger proportion of backward propagation corresponds to longer duration in the turning and zonal patterns. Forward propagation associated with the longest intense precipitation in the turning pattern is rare.

     

/

返回文章
返回