高级检索
周晨虹, 包云轩, 黄建平, 刘寿东, 李建明. 西太平洋地区大气边界层内臭氧的季节变化及其影响因子分析[J]. 大气科学, 2013, 37(6): 1348-1356. DOI: 10.3878/j.issn.1006-9895.2013.12196
引用本文: 周晨虹, 包云轩, 黄建平, 刘寿东, 李建明. 西太平洋地区大气边界层内臭氧的季节变化及其影响因子分析[J]. 大气科学, 2013, 37(6): 1348-1356. DOI: 10.3878/j.issn.1006-9895.2013.12196
ZHOU Chenhong, BAO Yunxuan, HUANG Jianping, LIU Shoudong, LI Jianming. Impact of Meteorology and Anthropogenic Emissions on Seasonal Patterns and Changes of Ozone in the Planetary Boundary Layer over the Western Pacific[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(6): 1348-1356. DOI: 10.3878/j.issn.1006-9895.2013.12196
Citation: ZHOU Chenhong, BAO Yunxuan, HUANG Jianping, LIU Shoudong, LI Jianming. Impact of Meteorology and Anthropogenic Emissions on Seasonal Patterns and Changes of Ozone in the Planetary Boundary Layer over the Western Pacific[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(6): 1348-1356. DOI: 10.3878/j.issn.1006-9895.2013.12196

西太平洋地区大气边界层内臭氧的季节变化及其影响因子分析

Impact of Meteorology and Anthropogenic Emissions on Seasonal Patterns and Changes of Ozone in the Planetary Boundary Layer over the Western Pacific

  • 摘要: 利用臭氧探空资料,分析了西太平洋地区香港(Hong Kong)、那霸(Naha)和札幌(Sapporo)三个站点2000~2010年期间大气边界层内臭氧(O3)的季节分布和年变化趋势。结果表明,三个站点O3的季节分布存在明显的差异。其中,那霸和香港大气边界层内O3季节平均呈双峰值分布,其峰值分别出现在春季和秋季;而札幌站为单峰分布,峰值出现在春季。造成季节分布差异的主要原因包括人为污染源和自然因素如气象条件。另外,三个站点大气边界层内O3均呈上升趋势。其中札幌、那霸上升最快,分别达0.80 ppb a-1和0.77 ppb a-1。(ppb表示10-9,下同)香港的年际增长较不明显,但秋季增长却非常明显,高达1.21 ppb a-1。结合GOME (Global Ozone Monitoring Experiment) 和SCIAMACHY (Scanning Imaging Absorption Spectro Meter for Atmospheric Chartography)卫星反演的NO2数据发现,过去10年中国京津唐和东北地区的对流层内NO2柱总量增加极为迅速。这些O3前体物通过远距离输送是导致札幌、那霸O3浓度增加的主要原因之一。珠江三角洲人为污染源的增加及偏北气流的影响,是导致香港地区秋季O3增加的主要原因。

     

    Abstract: Seasonal patterns and annual variations of ozone in the planetary boundary layer are analyzed using observational data recorded over the western Pacific during 2000-2010. The datasets include ozone sounding data at Hong Kong, Sapporo, and Naha; satellite retrieval tropospheric excess columns of NO2; surface ozone; and meteorological variables. The results show patterns of ozone that differ significantly at the three sites. Both Hong Kong and Naha show bimodal patterns with peak values in spring and autumn and the lowest value in summer, whereas Sapporo shows one peak in spring. Meteorological conditions and human activities account for such differences in seasonal patterns. Similar increase rates of ozone (0.80 versus 0.77 ppb a-1) (ppb represents 10-9) are detected within the planetary boundary layer at both Naha and Sapporo sites. Hong Kong shows the smallest annual change but the largest increase rate (1.21 ppb a-1) in autumn. The tropospheric columns of NO2 retrieved from GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (Scanning Imaging Absorption Spectro Meter for Atmospheric Chartography) measurements indicate that the increasing ozone within the planetary boundary layer at Sapporo, Naha (annual mean), and Hong Kong (seasonal mean in autumn) result from increasing anthropogenic emissions and regional transport. The cluster analyses of backward trajectories calculated with HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model further confirm that the increases in ozone over Naha and Sapporo are attributed to the regional transport from northeastern China.

     

/

返回文章
返回