高级检索
张东凌, 卢姁, 张铭, 等. 2023. 气候模式CAS-ESM-C对1月热带太平洋流场模态的模拟评估[J]. 大气科学, 47(3): 725−738. doi: 10.3878/j.issn.1006-9895.2205.21016
引用本文: 张东凌, 卢姁, 张铭, 等. 2023. 气候模式CAS-ESM-C对1月热带太平洋流场模态的模拟评估[J]. 大气科学, 47(3): 725−738. doi: 10.3878/j.issn.1006-9895.2205.21016
ZHANG Dongling, LU Xu, ZHANG Ming, et al. 2023. Simulation and Evaluation of Climate Model CAS-ESM-C for Flow Field Modes in the Tropical Pacific Ocean in January [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 725−738. doi: 10.3878/j.issn.1006-9895.2205.21016
Citation: ZHANG Dongling, LU Xu, ZHANG Ming, et al. 2023. Simulation and Evaluation of Climate Model CAS-ESM-C for Flow Field Modes in the Tropical Pacific Ocean in January [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 725−738. doi: 10.3878/j.issn.1006-9895.2205.21016

气候模式CAS-ESM-C对1月热带太平洋流场模态的模拟评估

Simulation and Evaluation of Climate Model CAS-ESM-C for Flow Field Modes in the Tropical Pacific Ocean in January

  • 摘要: 利用气候模式CAS-ESM-C从1922年起84年的模拟资料,对1月份热带太平洋上层流场作复EOF分解及小波分析,并与实况以及理论解析解作对比讨论,以考察模式对赤道大洋上层流场的模拟能力,得到主要结论:(1)复EOF分解前3个模态的方差贡献为53.5%、12.9%、9.5%,累积方差贡献为75.9%,累积方差贡献比实况更高。(2)第一、二模态空间场与实况相比总体相像,流场都为赤道所俘获,在俘获区内的流场均以偏纬向流为主;差异在于模拟资料分析的赤道俘获区范围较实况要大,流场的经向流分量及越赤道流也较实况明显。(3)第一、二模态实时间系数序列无线性变化趋势,而实况则有。复EOF模态年际及年代际变化与实况相同或相近;第一、二模态中3~7年的年际变化是厄尔尼诺与南方涛动(ENSO)的反映;第一模态22~23年的年代际变化受北太平洋主要气候模态北太平洋年代际振荡(PDO)对热带太平洋的影响,而第二模态13年的年代际变化是受北太平洋次要气候模态北太平洋环流振荡(NPGO)对热带太平洋的影响;第一、二模态还都有峰值16年的年代际变化,这可能与印尼穿越流有关。(4)模拟资料分析的结果具有理论解析解中流场为赤道所俘获及流场为纬向流的特点,只是解析解中因无风应力强迫,流场呈纯纬向流。(5)第一(二)模态在赤道太平洋东部(中部)有海温动力异常,并可称之为东(中)部型ENSO模态。气候模式CAS-ESM-C对热带太平洋上层流场的模拟表现较佳。

     

    Abstract: In this study, complex Empirical Orthogonal Function (CEOF) and wavelet analyses are applied to the 84-year simulation flow fields in January of the climate model CAS-ESM-C from 1922. The simulation results were compared with the actual situation and theoretical analysis solution to examine the simulation ability of the model for the upper equatorial ocean flow field. The main conclusions are as follows: (1) The variance contributions of the first three modes of the CEOF decomposition are 53.5%, 12.9%, and 9.5%, respectively. The cumulative variance contribution was 75.9%, which is higher than the actual situation. (2) The first and second eigenvector patterns are similar to the actual situation. The equator captures the flow fields, and the flow fields in the capture region are dominated by the partial latitudinal flow. The difference is that the equatorial capture area in this study is larger than the actual situation, and the longitudinal flow component, as well as the cross-equatorial flow, are also more obvious than that of the actual situation. (3) There is no linear trend in the real-time coefficient sequence of the first and second modes in this study, but this trend exists in the actual situation. The inter-annual and inter-decadal variations of the CEOF modes are similar to the actual situation. The inter-annual variation of 3–7 years in the first and second modes reflects ENSO (El Niño–Southern Oscillation). The inter-decadal variation of 22–23 years in the first mode is influenced by the North Pacific main climate modal PDO (Pacific Decadal Oscillation). The inter-decadal variation of 13 years in the second mode is influenced by the North Pacific secondary climate modal NPGO (North Pacific Gyre Oscillation). Both modes have an inter-decadal variation of 16 years, which may be related to the cross-flow in Indonesia. (4) The results in this paper show that the flow field is captured by the equator and zonal in the theoretical analytical solution. However, the flow field is pure zonal due to the absence of wind stress in the analytical solution. (5) The first (second) mode has dynamic SSTA (sea surface temperature anomaly) in the eastern (central) equatorial Pacific Ocean, which can be called the eastern (central) ENSO mode. The climate model performs well in simulating the upper flow field of the tropical Pacific Ocean.

     

/

返回文章
返回