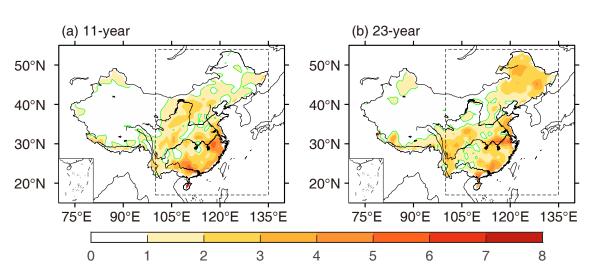
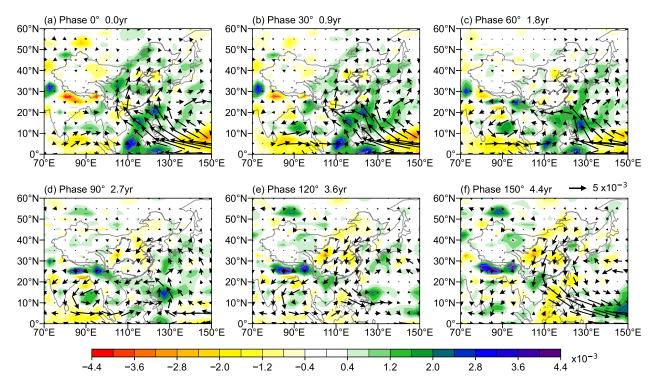
Electronic Supplementary Material to: Synergistic Interdecadal Evolution of Precipitation over Eastern China and the Pacific Decadal Oscillation during 1951–2015*

Minmin WU^{1,5}, Rong-Hua ZHANG^{2,3,5}, Junya HU^{1,3}, and Hai ZHI⁴


¹Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

²School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China

³Laosan Laboratory, Qingdao 266237, China


⁴School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China ⁵University of Chinese Academy of Sciences, Beijing 100029, China

ESM to: Wu, M. M., R.-H. Zhang, J. Y. Hu, and H. Zhi, 2024: Synergistic interdecadal evolutions of precipitation over eastern China and the Pacific decadal oscillation during 1951–2015. *Adv. Atmos. Sci.*, **41**(1), 53–72, https://doi.org/10.1007/s00376-023-3011-z.

Fig. S1. The standard deviations for precipitation reconstructed at the (a) 11-year cycle and (b) 23-year cycle. The green line is a 1 mm month⁻¹ isoline. The dashed box indicates the domain of eastern China $(100^{\circ}-135^{\circ}E, 17^{\circ}-55^{\circ}N)$.

^{*} The online version of this article can be found at https://doi.org/10.1007/s00376-023-3011-z.

Fig. S2. The half-cycle spatiotemporal evolutions [from phases (a) 0° to (f) 150°] of the vertically integrated water vapor flux (vector, units: g m⁻¹ s⁻¹) and its divergence (shading, units: g m⁻² s⁻¹). The results are obtained from the combined fields (including the China precipitation, North Pacific SST, and vertically integrated water vapor flux and its divergence) reconstructed at the 11-year cycle (f = 0.094 cycle yr⁻¹). There is a 0.9-year time difference between each frame.

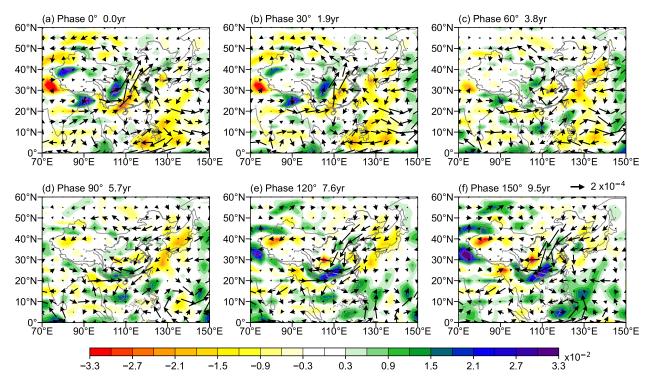
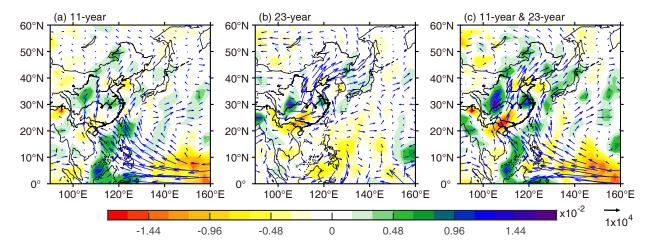



Fig. S3. As in Fig. S2, but reconstructed at the 23-year cycle. There is a 1.9-year time difference between each frame.

Fig. S4. Distributions of the reconstructed signals in the summer (June–July–August) of 1998: vertically integrated water vapor flux (vector, units: $g m^{-1} s^{-1}$) and its divergence (shading, units: $g m^{-2} s^{-1}$). Panels (a) and (b) represent the fields reconstructed at the 11-year and 23-year cycles, respectively, and (c) illustrates the composite fields for the 11-year and 23-year cycles.