Electronic Supplementary Material to: Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks*

Temesgen Gebremariam ASFAW^{1,2} and Jing-Jia LUO¹

¹Institute for Climate and Application Research (ICAR)/CIC-FEMD/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing 210044, China ²Institute of Geophysics Space Science and Astronomy, Addis Ababa University, Addis Ababa 1176, Ethiopia

ESM to: Asfaw, T. G., and J.–J. Luo, 2024: Downscaling seasonal precipitation forecasts over East Africa with deep convolutional neural networks. *Adv. Atmos. Sci.*, **41**(3), 449–464, https://doi.org/10.1007/s00376-023-3029-2.

Fig. S1. (a) Bias and (b) anomaly correlation coefficients (ACC) based on the scalability downscaling experiments performed using ERA5 predictors (for both training and predicting, i.e., in **perfect conditions**). The coarse-resolution experiment uses predictors at 1.1° spatial resolution to downscale precipitation to 0.25° (around 28 km) target resolution while the fine-resolution experiment uses predictors at 0.25° spatial resolution to downscale precipitation to 0.1° (around 12 km) target resolution.

^{*} The online version of this article can be found at https://doi.org/10.1007/s00376-023-3029-2.