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ABSTRACT

The statistical characteristic quantities and marginal probability distribution of the Lorenz strange al-
tractors were coroputed numerically. The resuits indicate that after a sufficiently long time the statistical
characteristic quantities and marginal probability distribution tend (o stable states, and the motion on the
strange attractor is ergodic.

[. INTRODUCTION

In 1963, Lorenz used a simple three—mode system of nonlinear ordinary differential
equations, truncating from the mode equations of two-dimension Raylaigh-Bénard con-
vection problem, to discuss the problem of predictability. [t is as followst?!
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where x, siands for the intensity of the convection, x, and x; stand for the deviation of tem~
perature, ¢ is a constant, P the Prandtl number and R the Rayleigh number. P, R and a
are all the parameters of the system, Lorenz discussed the stability of Eq. (1) for different
values of the parameters. He showed that under unstable condition, the dynamical system
{1) would evenmally tend to a chaotic motion in a specific region in phase space X (x,, X5,
x,). Even if the difference between two initial values is very small, that is |[3X,[ <1,
the dislance between the two moving points in phase space X would become very large as
f increases. In the iwenty years followed, the contlinuing cencern over this problem has
resulied in many studies of various aspects of the problem.

Eq. (1) is deterministic, so that if the initial condition is given accurately, solution
should be deterministic, that is, at any time ¢, the solution has a definite value X (1, X},
How do we undersiand the chaotic properties of the strange attractors in this case? D.
Ruelle guessed that the motion on the Lorenz strange attractors is ergodic™. 1. Shimada
and T. Nagashima computed the Lyapunov exponent and indicated that except some point
sets of zero Lebesgue measure the motion on the strange attractors is ergodict). M. Lucke!?!
and E, Knobloch'®), starting from the hypothesis of ergodic, derived the relation of some
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statistical quantities of Lorenz sysiem with parameter R. Their results are in better agreement
with numerical computation, indicating the reasonability of the ergodic hypothesis indirectly.
In this paper, by solving Eg. (1) numerically, we attempt to directly indicate that the
motion on the strange atiractors lollows an invariant and stable probability distribution
and is ergodic.

. MOMENT PHASE SPACE

When an initial value X, is given, one would get a definite trajectory by solving Eq.
(1). When R is in a range of some values, sclutions X (¢, X,) would become very sensitive
to X,. In order to study the statistical structure of Lorenz strange attractors, we let X,
be indeterministic bul obey a deterministic probability distribution P (X,, t,). For t>r1,
the probability distribution density of solution X (#) is P (X, /). We can define the mo-
ments according to P (X, f)

M)a.e,m(i)=(kyzsm:):[xfxiITP(X.,xz,xs,f)dx,dx;dxg. ( 2 )
P (X, 1) satisfies the following probahility conservation equationt®
ap | @ rdx p\_
o o, ( dt P)“O‘

Thus it is easy to derive the evolution equations of moments. They are
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Bylom=0,1,25¢ 0. (3)
In thit paper, some main statitical characteristic quantities, expected value X (), stand-
ard deviation o,;(t) and marginal probadility distribution density f{x;, r} are computed.

They are

" f.‘(‘)=\X}P(xuxz;xui‘)dx]dxzdx,,

-

gr'f(t)z i(xr"_if)(x.f_i!')P(xuxzyx‘u‘)dxldx;dx” [ 4 )

N f(x-'!t)z\P(xuxszut)%s 4V =dx,dx.dxs.

In the computation the'contjnuous functions P (X,, t,) and P (X, ¢) are replaced by
the discrete functions P (X,, f,) and P (X, t) at N points, so that (4) becomes

(e b = V(E)
‘I;——jv ;x

| ¥
| a.-,-ziZ(x‘,“’-—f.-)(x‘,“—f,-). (5)
jV k=1
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where ¢y is the probability distribution density on N points at time 7. We will iater
discuss the effect of the dispersion approximation on the results. Besides, we also define the
distance between the jth point and average-value point as

. R
rit= [ (el — 2.0 (6)
1=1
Then the mean distance of the N points with respect to the average-value point is
1 N
=g D rt (7)
i=1
and the standard deviation o,, is
N
— 1 [T 8
T ()= PN CLIES S L (8)

i=1

The mean value X(%,, #,, #,) can be regarded as a phase space, which is known
as mean value phase space X, and the deviation ¢,; as deviation phase space A. Because
of o,;=0y; (i2)), A has only six components. X and A combine and construct a phase
space, called moment phase space M, which contains nine components. Therefore the N
points with definite average value and deviation in the phase space X correspond to a single
point in moment phase space M.

111. THE ATTRACTORS IN MOMENT PHASE SPACE M

Putting a= ;/17, P=10, R=320 and solving Fq. {1} numerically for the initial condi-

tion X,=(0, 1, 0) we obtain strange attractors shown in Fig. 1, which agrees with Lorenz’
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Fig. 1. Lorenz strange attracior with a=g5 P=10, R=320.
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results. In the computation, 4000 peints which satisfy normal distribution with expected
values (50, 100, 100) and deviation o, =001, ¢,;=0.0, were generated randomly, and

Eq. (I) was integrated for each of these A initial pointse with a time step length of +=0.01.
Fig. 2 {a—d) is the iime evolution curves of z,(¢), (1), o, (f), and o{). The evolution
of z, (r) is similar to that of £,(#), 0,24 043+ 02:+F and ¢, are similar to o,,, and ¢, t0 o,

It can be seen from the figures that in the carlier stage (7'<C30), z,(¢), =,(¢), o, (1)

7,.(f) all have a large~amplitude variation, but in the later time stage all of the statistical
characleristic quantities tend to specific values. Though there are small undulations near
the specific values, it wil be seen that these undulations are compietely random and they are
caused by the dispersion of P (X,, #,) and P (x, ¢), not the property ol the motion dis-
cribed by Eq. (1). Thus after a long time, it seems that the trajectory in the M phase
space tends to a definite point, Moreover, one ¢an see that the initial deviation is 0.01 and
the final is about 1000, that is to say the final amplitude of deviation increases more than
about 300 times that of the initial deviation,
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Fig, 2. Evolution of some components of phase space M.
(@) 2,02); (b) 5:(); (©) 0,,(); (@) oule).

In order 1o study the property of the undulation of the statistical characteristic quantities
near their definite value, we divided the evolution process into two parts with a boundary
F=30 and studied the power specirum of every component in space M respectively. Fig.
3(a—d) gives the power spectrum of £, and o,. The spectrum of %,, 0., and o, is similar
to that of #,, and the others to ¢r,,. It can be seen from the figures that in the first stage,
statistical characteristic quantities are periodically decay oscillations. The period is Ty=1/f,=
1/2.77=0.36, which equals approximately to the average time needed for circling around one
of the two states of Eq. {1). However in the later time stage, though the periodic motion
with the primary frequency has not been vanished completely, the power spectrum of the




220 ADVYANCES IN ATMOSPHERIC SCIENCES Vol. 2

i T

1.0 5.0 12.0 1.0 f 1.0 EN 1Z.0 160 7

(a) (k)

o400
1% ]

L S— ""Mi T’M WWM[M

40 B0 120 1640 7 T B EET A
(c) (d)
Fig. 3. Power spectrum of 240) and o, {f} in different time stages.

@ 2(f): 0<T<AL; (b) 2df); 29<KT<I0; (9 oulf); 0T
) oulfy; 29LT<L70.

statistical quantities of the system is close to white noise spectrum on the whole. This in—
dicates that in the phase space M every component takes random undulate motion near
a steady value. For any component m in phase space M, we take the average value 10
describe the steady value and use § to describe the extent of the undulation. They are
compuied by the following equations

m(t)dt Z mlic),
[_” (9)

bl - {5 -]

7Ty, or= t=n,

‘vmiﬁji‘"‘w T.- T*]

The results are listed in Table 1.

Table 1  Steady Values and Undulation Amplitudes of Statistical Quantities with Normal Iniial Distri-
bution and n,=3000, #.=T7000
T, ‘ 2 2, Ty T2 [+ F7) [<FH) T [£]) r Ty
m ‘ —0.01 l —0.04 | —288.94 1022.40 325003 | 0.37 | 14918.07 | 0.59 [6163.06| 132.69 | 4500.26
S S i
e | 0,51 \ 1,92 1.34 | 1763 | 68.92 | 44.79 317.86 |139.56 I22.4Ii 1.16 99.03
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Table 2 Steady Values and Undulation Amplitudes of Slatlstlcal Quauntitics with Uniform Initial Distribu-
tion and &, =3000, »,=7000

[ [
Z; ‘ Za B oy \ Tz (=8 I (4P f O Faz ‘ r Dpp
—— —_—— — —_— i ‘ —_— . —
i
] -0.01 | —0.03 | —-288.M4 ’1022.42 3250.21 . 0.35 14919 39 l 1,02 l 6164.07 ’ 132.69 | 4500.39
[
4] 0.53 ‘ 2.01 1.67 E 22,55 | 86.79 | 47.38 ‘ 380,52 ) 143. 50 131.91 1 1.48 107,68

In order to further investigate the causes of the undulation of the statistical quantities,
we took N,=4000 and N,=1000 respeclively for the same uniform initial distribution
P (X, t,). The computed values of # and & are listed in Table 3. It can be scen from
the table that the undulation intensily 5 of &, decreases by about one time compared with
that of &,. This indicates that undulation of statistical characteristic quantities pear the
steady values is caused by the approximation of dispersion of P (X, t), so that it does not
represent the feature of the motion,

Table 3  Steady Values and Undulation iAmplitudes of Statstical Quantities for Different Dispersion Point
MNumber with Uniform Initial Distribution {#, =3000, »,=7000)

N Z L } Ty on | oo Tia Tz Ty T r Trr

i T
m 1000 ’ 0.21 0,66 ’—288.98}102].72 '3248.04 —5.31 |14905.14) —22.95 [6151.83 [132.62 |4491.06

# 4000 |-0.06 '-0.21 |—288.94|i022.51

3250.38 | 1.46 (1491843 7.29 616510 |132.20 |4499.70

[ 1000 1.06 4.04 Z.SSI 34.35’135.75 95.71 618.64292.31 | 290,951 2,24 | 199.7%

' |
P.] ‘4000 (.48 1.86 1.52) 20,47  79.67 | 46,24 354.041144.19 132.53 1.35 } 108.9%%

Similarly, for the uniform initial distribution with the same parameters and the expected
value (0, 1, 0), we performed the same computation. The results are listed in Table 2, which
is in good agreement with that in Table 1.

The results and above analysis indicate that in moment phase space M the final
state of flow seems to be independent of initial condition and tends to a steady stafe when
t—>oo. Not only the moment X and o tend to sieady state, but also the probability dis-
tribution density P (X, ¢) does. The evolution of f (X, t) is shown in Fig. 4 {a—¢),

It should be poinied out that #,=%,=0,; = ¢, =0 due to symmetry, but because there
must be some small computational errors, z, apd Z, are not exactly zero. According to
Eq. (3). we know that ¢,, and @, are dependent on z, and %, and have amplification effect.
Thus deviation of ¢, and o., from zere are large.

1¥. THE ERGODKZ PROBLEM

In order (o investigate the ergodic nature of the motion on the strapge attractors, ihe
average m; and correlation moment o for ¢ were computed for any components x;(r} in
phase space M. They are
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For initial value X, -—(O,I,O) the results are as in Table 4. Comparing Table 4 with Tables
1—3, we get
M =ml, ool .

Table 4 The Average m,' and Correlation Moment o,‘j for r {m =35000, n.=105000)

, . ! |
% # l & of ol i als ! T =H) o5 L gl
0.25 ‘ 0.79 l —288.99 | 1022.82  3251.82 =577 | 14900.94 | —29.87 } 6132.46 132,55 4486.52
|
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fxn K- 0 2099 Fagtog=b2al F=7u Compnnenr -x;
2 K-320.00 M aglog fr, T\=50, T,=1050, M=(T.—T,} /=,
hd Factor is the amplifying factor of f*,
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We have also carried out the statistical calculation of what x(¥) has passed in the intervals
7.>>t>T, and obtained the marginal probability distribution density f/(x;) and f* (r) as
shown in Fig. 5 (a—d). They are very similar to the distribution of points in phase space
when ¢ is large enough. This indicates that the motion on the strange attractors is er—
godic.

Y. CONCLUSIONS

According to the results of the numerical computation in this paper the following two
conclusions are indicated:

1. Though Lorenz system (1) and its solution are deterministic, the motion on the
strange attractors is ergodic and random on the whole.

2. The motion on the Lorenz attractors is chaotic, but its statistical characteristics are
siable, and it has deterministic statistical structure and does not depend on initial conditions.

In this paper the numerical computations were carried out for only one group of para-
meters. In order to prove the above conclusions, more computations and strictly mathe-

matical proof are needed.
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