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ABSTRACT

Considering the observational error. the truncation error and the requirements of numerical weather
prediction, three formulas for determining the distance between two adjacent stations d,, the observational
vertical increment Ag, and the observational time inkerval Az, in optimum sense, have been derived. Since
they depend on the shortest wavelength concerned and the ratic of maximum observational error to wave am-

plitude, the results are quite different for different scale systems.
For the filtered model the values of d,, Ap,, and A¢, in general come near those reguired in the MANUAL

on the GOS published in 198¢ by WMO. But for the primitive equation model the ¢stimated value of At,

is much less than those required in the filtered model case.

Therefore, it is improper o study the fast moving and developing processes of the atmospheric motion
only on the basis of the conventional observations. It seems 1o be necessary to establish an optimum
composite observational system including {he surface based system and the space—based system.

I. INTRODUCTION

1t is necessary to have enough observational data firstly for making weather predictions.
The accuracy of the predictions, to some extent, depends on the accuracy of the data,
the observational time interval and data distribution. Apparently, high—quality data are
favourable 1o predictions, especially to numerical weather predictions (hereinafter the ab-
breviation NWP is used),but extremely uneven data distribution and sparse data, are much
unfavorable, However, these problems have seldom been studied as formulations of math-
ematical physics, since the carly days of making predictions by using modern weather
maps.
In 1970, based on statistics and climatology, Alaka!? and Drozdov and Spelevskijt®
gave some formulas to compute the admissible distance between two adjacent observational
stations. However, since no observational data requirements for NWP are taken into account
in their derivation, those formulas are applicable only to designing the climatological net-
work.

In 1983, the author et al. presented two formulas for determining the optimum distance
between two adjacent stations of a horizontal plane and the optimum observational time
interval, but no consideration in the vertical was taken. It seems that how to design a
meteorological station network to meet increasing demands of NWP remains an unsettled
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preblem.  On the other hand, in recent years, in order to predict severe weather caused by
meso- and small-scale systems straightforwardly, many meteorologists tend to take the grid
as fine as possible o reduce truncation error.  How fine should it be? Docs there exist any
limitation to it? These problems are still to be solved.

In the following sections we shall discuss the problems mentioned above in turn.

. BASIC EXPRESSIONS

If all the stations coincide with all the grid points, the distance between (wo  adjacent
stations may be regarded as identical with the grid length. For this reason it is enough to
discuss the latter only. '

The central difference quotient ¥, 7 of a fungtion f (x, ¥, p, t), within second order
accuracy, may approximately be written as

) SN Y
W.f ﬁx+5 axgﬁx, (1
where fo:‘-'k:f!’;?-ﬂx"ﬁvf:fi-ﬂ -—fl'—‘l L] Ax:x/ig II:'D,I.,"' ,L .
I f represents a cerlain meteorological element with observational error e and true
value £, then

J=fi+e, (2)
substituting (2} for fin (1), we have
) ESN S S
VS 7% ae Ax*4+W.e. (3)

In similar manner replacing x in the above expression by 3, p and t respectively,
similar expressions can be obtained immediately,

In the expression (3}, the first term on the right hand side represents the truncation
error caused by replacing the derivative with the central difference quotient, the second term
represents the error caused by cbservation. [t can readily be seen that the truncation error
increases with d, while the error caused by observation decreases with d.  Therefore, it seems
to exist an optimum & io make minimum the total sum of (V./—3f,/8x)* at all the
stations in the entire computational domain during time period T,

If the above treatment is applied to similar derivatives and similar difference quotients
with respect to y, p and + then a function

Po2 B E (v ) wnlva- ) (w2 )
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can be COI’lStl‘UClcd, where Wy{ ):‘,_\‘y( )/23.3” Ay( )=( )[ll,ﬁhhﬁ_‘( )tfi.:—l*lu
J'=y/f-\y,i=0:1,-",M; Vn( )=AP( )/2AP’ -'3.0( )=( )‘f'.}.rm—*( )‘l'.}.h—u
k=plAp, k=0,1,~,N; V. )=a, )/2At, v=0,1,~-,T; a,, a, and g, are
weighting coefficients.
Requiring F in (4) to be minimum under the conditions
aF aF aF

dAx = 3-1.3-);7:0; BAp =0 - and »EE"=O’ (3)
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we find
S5 S S L (2 awe L ha e LT
T=n (=1 j=v k= 18 t _BES Y x 1?_373:3_’ £ 4—(Ax8) A-x" }l-f.k_o-

(6)

In the above expression, if x is replaced by y, p, or . Axby Ay, Apor A, and Ae

by Aye, Ape or Aye, we can obtain three other similar expressions. Eq. (6) and the other
similar expressions are the basic expressions in this paper. Given function forms of f,
and ¢, we can find the optimum value of Ax, Ay, Ap and Af from these expressions.

[II. THE FORMULAS FOR DETERMINING 4 AND Ap

1. Function Forms of f, and ¢

Considering the distribution of meteorological elements and their time variation usually

to be in sinusoidal form, we assume
fi=A sin(lx+my+np—02), (7)

where A is the wave amplitude, /, m and n the wave numbers in x, y and p directions
respectively, J=2x/L,, m=2a/L,, n=2a/L,, L., L, and L, the wavelengths in x,
y and p directions respectively, {2 the frequency, 0=2x/T,, T, the period.

Usually the function forms of & is very complicated. For convenience of discussion,
two special cases will be considered below.

{1y Case 1
[Avel = Asel =Are] =] Me| =C, (8)

where  is a constant. Suppose &,;,= max |&'/.|. Then 0<KC<2¢eq, .
aishar

(2} Case 2

B=E5iﬂ({;x+m1y+”1p“9|r)’ (9)
where E is the wave amplitude, /,, m1, and #, the wave numbers in x, y and p directions
respectively; (2, the {requency.

2. Determination of d, and Ap, in Optimum Sense

(1) Case t

For simplicity, suppose the length of the computational domain in x-direction to
be n, L, where 1, is a posilive integer. Substituting (7} and (8) into (6), taking C=2 g,
and using the trigonometric formulas

i
Z cos (Ix,+my;+np.—5H#.)=0 (103
r=1

and

L
> cusl(lx;+my;+npj—9f,)=%, (11
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we can find
Lo 4 Bemam
d= H JEmax
1 44 (12)

Replacing x by p and making use of (6) lead to

[.p H —36‘,‘,"
% 44
Here the assumptions Ax=Ay=d and L,=L,=/, have been made.

I the shortest wavelength in x direction considered in NWP and the corresponding
optimum distance between two adjacent stations are denoted by L., and d, respectively,
then o, can be obtained by replacing & by ¢, and L by L ;, from (12). Similarly, if the
shartest wavelength in p direction and the corresponding optimum vertical observational
increment are denoted by (L,)n;, and Ap, respectively, then replacing L, by {(Lp)w,
and Ap by Ap, can cbtain Ap, from (13}

From (12) put g,/ A=1/10 and L,;,=10"km, then the curve of J, varying with
Lois OF Emyy/A can be illustrated in Figs, | and 2. Comparing these two curves we can
sec that 4, varies much faster with £, than with ¢,,./4. Therefore, we may con-
clude preliminarily that d, is mainly determined by L. This is the essential difference be-
tween the formula {12} and those obtained by Alaka and Drozdovetal. In the latter formu-
las the distance between two adjacent stations depends on the root mean sguare of ob-
servational standard deviation and is independent of the horizontal wavelength.

Ap= (13)

L
+

~ i Leia=10° km
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Fig. |. Relation betwesn o, and L,;.. Fig. 2. Relaton betwesn ¢, and em.. ‘4.

The formulas (12) and (13) are quite similar, Put {L,),;,=10° hPa, Then the variation
of Ap, with g.,./4 is the same as that shown by the curve in Fig. 2 provided that d,
is replaced by Ag, and the length unit km by the pressure unit hPa, In this case, if the
value of 4,/ A is taken to be 1/10, then for the wave with (Lp)n;, of 1000 hPa, Ap,~130
hPa. This value is equivalent to dividing the atmosphere into 8 layers, For the wave with
{Lpimin of 500 hPa, the atmosphere can be divided into 15—16 layers.
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(2) Case 2

Substituting (7) and (9) for f, and ¢ in (6) respectively and considering the case in which
L=l m>m, nn and %, we have

Loy 3 E
d, = _T \/ PR (14)

where u=./2|sin{.d|/2.

Comparing (14) and (12) we can see that if g,,, is replaced by E, the terms under the
cubic roots on the right hand sides in both expressions are different by a factor 4. When
the wavelength of ¢ in x direction is taken to be 2d, 4 =0.7071. This is the possible max-
imum valug we can obtain. However, even in this case, x has no much effect on d,.
For exzsmple, when { ., =10° km and ¢,,,/A=1/10, from (12) we have d,~130 km,
and from (14) we have J,~118 km. The latter value diminishes by 1/10 only.

3, The Problem of Reduction of Truncation Ervor by Decreasing rhe Grid Lergth

The above formula for determining &, may also be used to determine the grid length.
It will be seen from (6) that &, has a definite value for given L, and function forms of
f, and &. Thus, improving the accuracy of computation only by dccreasing the grid length
is not always true, It might be, in some cases, ineffective. That is to say the advantage
of decreasing the grid length is limited. Therefore, improving the accuracy of ccmputation
neecs not only fine grid length, but also data with less observational errors.

4, The Shoriest Wavelength Truncated in Spectral Models

In most spectral models, the choice of the shortest wavelength truncated, to some extent,
is arbitrary, or depends on experiences. Actually, this problem can be settled by (12), for
if d, is given, we can find L, from (12), namely

La=dif 2. (15)

32max

Then putting ¢, =100 km and using the given value of &,,./A mentioned above, we get
Lumi,~766 km. This value comes near those determined frem experiences.

IVv. FORMULAS FOR DETERMINING THE OPTIMUM OBSERVATIONAL TIME INTERVAL

Now we shall derive some formulas for determining the optimum observational time

interval.
Replacing x by ¢ and substituting (7} and (8) for d, and A,z in (6), we have

1 Zmgx
A=k \/ﬁ e (18

Here C is taken to be 2e,,,. However, owing to the connection of £ with /, m and n,
we can not determine Al without given relation between them,
The following two cases are taken into account,

-
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V. The Filtered Mode!

Adopting the linearized vorticity equation

[ 2. d &y AP _; o i
Jt o dx ) ax +8 dx /s ap an
and the linearized thermodynamic equation
(4 L, 2N __ o
Vo™ ﬂ.x)ap" A (18)
and eliminating o from them, we can obtain
A a )( &’ £ty 29 -
BRI - L °Y ),
( ot tu % 8x2+ o apt )?H‘ﬂ Ax (8}
where ¢ is the stream funtion, $=¢/f.s ¢ the geopoteniial height of isobaric surfaces;
f. the Coriolis parameter at a given latitude; w=dp/dl; o= -1 ~%n9~; p the density

of air; @ the potential temperature. Here o and the speed of basic zonal wind u are
assumed to be conslants respectively.

Replacing f, by g and assuming that the above equaiion has the solution like (7) in
form, we obtain

— (20)

The 2 in the above expression represents the [requency of Rossby waves. Since, in general,
[*>fin? /5 in middle and high latitude regions, the  determined by the above expression
approximates that in the barotropic filtered model case. Given u=15 mfs, f,=10"" s~
B=1.6%x10"""m™'s"' and o=3x107*m’s*hPa?, we can obtain the optimum
observational time interval A#, for different horizontal wavelengths and vertical wavelengths
from (16) and {20). The resvlts are shown in Table 1. Tt can be seen from the table that
the values of A#, computed from (16) have no much differences from those required by the
MANUAL on the GOS published by WMO in 1980,

Table 1 The Optimum Observational Time Interval {br) in the Filtered Model Atmosphere

\\\\
Lowalkm)
(Ledaia 10° 2%10° ax10
(hPa) e
500 2.51 5.07 7.50
1000 2.54 .21 7.94

2. The Primitive Eguation Mode!

For the barotropic atmosphere, according to Morell?, we have
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Q.=lut+p ' gHI +f3» (21)
where e=1, 2. 3; y,.u. and u, are equal to 0. 1 and -] respectively: # the mean height
of the free surface of fluid.

When 4,20, the above expression represents the frequency of gravity waves. Since
gHI* is generally over one order of magnitude greater than f3, for the case of y,=1.
we can replace (2[) accurately by

Q= (ua+cil, (22)
where c=./ g7{ Putting g=10 m 57, H=9x1¥ m, and using (16) and the values of Q
computed by (22), we can obtain the values of A¢,.  The results are shown in Table 2

Table 2 The Optimum Observational Time Interval (hr) in the Case of the Barotropic Primitive Equation

Model
Luaw (km) L 10? ‘ 2107 1x1p*
A, (hr) ! 0.12 ‘ 0.24 0.35

For the baroclinic atmosphere, adoption of the linearized set of equations

i (23)
F

v __ B¢

oF +fu= R (24)

e

(Jtap -rUU)-—O, (25)

au au Aa _ o
ax aa + dp 0 (26)

and elimination of &, ¢ and ¢ from them lead to

+f0)a°’+oww 0. (a7)

e
If the solution of {27) has the form like (7), the frequency equation

{28)

@ =fi+

can be derived, The £ in the above expression represents the frequency of internal inertia-
gravity waves. I the values of f and o are the same as those mentioned aboveand ey,./4
=1;10, {=rm, then the valuss of optimum observational time intervals for differeni horizon-
ta! wavelengths and veriical wavelengths can be computed from (16). The values are shown
in Table 3.

Comparing Tables 1, 2 and 3, we can see that the values of the optimum observational
time interval in the case of the fiftered model are generally greater than those in the case of
the primitive equation model. especially in the barotropic ¢ase. Evidently, it results from
thz difference in the propagation velocity between Rossby waves and gravity waves, This s

Tr
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Table 3 The Optimum Observational Time Interval (he} in the Case of the Baroclinic Primitive Equation

Model
f
Lma(km)

197 2% 107 310

(Lp)ua(hPa) |

T I _ i o

500 ‘ 1.48 1.99 ’ 217
1000 1 0.38 1.48 I 1.89

similar to the results caused by the difference of the time steps which is obtained from the
theory of computational stability in the two models with a common definite grid length.

If we compare the values in the above three tables with those required by international
convention, then only the values in Table | approximates the latier. Therefore, it seems
reasonable 1o adopt At, equal to 3 hours for Rossby waves in the case of the shortest
wavelength being 10° km (such as in the case of large-scale short-range prediction). How-
ever, in the case of the shortest wavelength being 2 x 10* km (such as in the case of large-
scale medium-range prediction or global prediction), adopting Af, to be 6 hours might
be desirable.

V. SURFACE-BASED OBSERYATIONAL SYSTEM

Based upon the results of section ILI and Table 1 the requirements of observational
data for the global, the regional and the national surface-based network can be listed in
Table 4. i will be seen that the required networks are finer than those in the Guide on
the GOS. Although it is just to meet the requirements in the case of Rossby waves, it is
probably difficult to establish such networks completely. We need wide, close and long-
term international cooperation.

Table 4 Requirements for the Surface-Based Observational System

Observational System Global ‘ Regional ‘ National
d, (km) ' 300 1 300 | 150
™o, of Layers , %g;ﬁssﬂg: g Same as the Global \ Same as the Global
A, {hr) 3 [ { 3

If we want the surface—based observational system to meet the requirements of NWP
in the case of the primitive equation model, it is necessary to overcome many tremendous
difficulties. Owing to scientific, technical and economic causes, it seems impossible to
establish such surface-based system in the near future. However, such situation would
have no effect on the formulation of NWP with ong-instant initial values, but would have
effoct on that with multi-instant initial values or time derivatives at initial instant, or on some
related research studies. On the other hand, if we still want to eliminate such effect, it is
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necessary to establish a composite observational system which includes both surface-based
system and space-based system (the satellite observational system being its main part) and
to keep improving the accuracy, space resolution and observational frequency of the system.
Of course, to establish a reasonable, economical, optimum and efficient system, many com-—
prehensive investigations, experiments, analyses and comparing works have to be done.

'
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