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ABSTRACT

In this paper a simple current system which consists of two stratified incompressible layers is examined.
For the basic equations of the motion of fluid a lower order spectrum model is established by means of
Galerkin method. Adopting the difference of wind velocity between the upper and lower jayers, Az=

ﬁ'—@%p& as a control parameter, the bifurcation and stability of the solution of the dynamical system
ate discussed, It is found that the flow states in the lower layer will have a catastrophe, when {Az[>
21}} C% , where Cy is the phase velocity of the intemall ineﬁio—gravitational wave in a geostrophic current.
These results may give a reasonable explanation for the mechanism of the catastrophe phenomena, including
the ““pressure-jump”’ in the atmosphere,

I. INTRODUCTION

For a stable stratified fluid, if the velocity of basic wind exceeds the phase velocity of
the gravitational wave, a pressure-jump will happen. This concept is often used to explain
the generation of squall in the atmosphere. Chao et al. have given a model!? for the motion
of fluid consisting of two stratified incompressible layers. They analysed some dynamical
propertics of the gravitational wave in geostrophic currents, when the fluid is at rest in
the upper layer and the basic geostrophic wind exists in the lower layer. In this paper, the
model is modified. We assume that the basic geostrophic wind also exists in the upper
layer. By using a lower order spectrum truncation, the effects of the basic wind velocity dif-
ference between the upper and lower layers on bifurcations and the stability of the solutions
of the spectrum equations are discussed.

1. BASIC EQUATIONS AND SPECTRUM MODEL

The motion of fluid shewn in Fig. 1 is considered, where @ is the density and # is the
basic wind, both of them being ¢onstant, and H is the interface height of the fluid before it
is disturbed. Labels 1 and 2 stand for the fluid in the upper and lower layers respectively,
u, v and A are the horizontal velocity components in the lower layer and the disturbance
height respectively,

When the thickness of fluid in the upper layer is large enough, we can use Tapper’s
assumptiont”? that the motion of fluid in the lower layer has no influence on the motion in
the upper layer. Therefore, the equations of motion for the fluid in the lower layer are
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Fig. 1. The model of motion of fluid, Fig. 2. The existential domain (exclusive of
: hatched areas) of the nontrivial solution.
given by
8w Pu 0w 1 3P
at +u Ix +v ay P. ox +fU, (1)
on du ov 1 ap
ey v L, 0v 1 ep P
I e AT P oy T® (2)
|
o el TR}, AT R o8 L %Y =y 3
at M +v Ay +{H+h) ax T Ay ? (3)
N P=P:Q(H|-‘Hz—h)-l“ng(Hz-Fh—z). (4)

In addition, it s assumed that the basic flow in the upper and lower layers satisfies the
geostrophic equilibrium relations, i. e. for the fluid in the upper layer

oM,

( ¥~ ax =0 (5)
\ed .
g '5}’—5".{2‘:;

and for theTfluid in the lower layer
g {-px( aH,  8H, )4.-,02 aH, ]=0’

I5) ax ax ox
{ al : . o
g eH, _ o, ) 8H: - _ 1z
o1 [p‘( ay ay +o 2y 1 /8.
Substituting Eq. (5) into (6), we obtain
oH . —0,
ox ‘
|
8H, _ f pB—p® _ f ag
ay g* P2
where
* — pz_'pl AB= pﬁc‘ﬂ:ﬁ:
9 P2 & ¢ P2
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——aT+u~ax—+ua—y=— # o +fu,
: %+u%+v% —-g*—?%—kfm-—fu,
\
" gf +u —gi+uﬂ+(H +h)( o g; )+ g{; Agu=0,
Let u=a@,+u",v=v’ and substitute them into the above equations. Then we have
S R R ‘?a“y —g* 2t o,
|
!‘ _%”%4. ,av -l-l'u1 + ,a;; =—g* g!; —fu’,
' %—i— ’3—k+uzgg—+v’ Zh =—(H, +h)( aavy) ;* AR v,

Assuming that ', ' and k are independent of y and neglecting label “2” in the equa-
tions, we obtain

' yont L _dwt L Bh p
C A ——tu e +zz——-—ax 9* s +fu’, (&)
a” +a s’ —-—fﬂ , (%)

“ox

N 6h+,ah+;8h

—(H+5) 2y (10)
at 2x Ax ox e

where F= —'f*—AzT. These are the basic equations which we will discuss.
g

It has been assumed that «', v, and % possess periodic boundary condition, therefore
the net flux along x direction is equal to zero in the interval of the wavelength L.

As a preliminary discussion, let us consider the following lower order spectrum trunca-
tions:

= B,(1}+ B.(¢) sindx + B, (¢} cosdx, ' (1D
f=Co()+C () sindx + C;(#)cosdx,
where §=2x/L, Substituting (11) into (8}—{10}, and then multiplying them by |,

sindx and cosdx respectively and intergrating for x from zero to 2x/5, we obtain an
ordinary differential equation system satisfied by the amplitudes, i. e.

. A, =84+ a)A:+ B +8g*Cas
A, =—8(A.+a)A,+fB,—8g9*C.,
B, =6(A,+u)B.—fA,,
U By=—8(A,+a) B —fA,,
O . =38(A,+8)C.— RB, +8(Cy+ H ) A,y
¢,=—38(4,+8)C,—RB,—8(C,+H)A4,

§ u’ = A,(1)+ A (#) sindx + 4, () cos dx,

(12)
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An=fBo,
B,,=~21—¢3(A,B,—A2£‘1)—fz4m
¢,=—-RB,.

Let C,=0, we have B,=0 and A,=0. Thus A, is independent of ¢ and represents
a “direct current” term. In this case the system of equations expresses a flow in seven—
dimension phase space. Using the matrix operator they can be written as

{ A=dA,A%—M{SBA, (13)
_ 1 _
A= _zratAlB: A8\, (14)

whete
A=[AI’A27319BZ'CI ;Cz]?‘9
A*=[A2,~'“A,,Bz,—B,,C;,—C,]T,

AA*¥=0,
F 0 —&a —f 0 0 —d8g*
|68 0 0 —f dg* O
i e
M@w= [ 0 0 —d& 0 0
0o f 8% 0 0 0
0 —8H R 0 4 — 483

WOH o 0 R 4= 0 v
Fq. (12) is the spectrum models that we will discuss. For the convenience of analysis,
the modules are defined as

u? [ == A Ak 4D,
" [I*= Bt (Bi+ BD,

1
I} = Ci+ 5 (Ci+CB,
which characterize the disturbance kinetic energy of the system.

HI. EQUILIBRIUM POINTS OF THE SYSTEM

When B,=C,=0, letting the right-hand side of (13} equal zero, we may obtain the
equatjons satisfied by the equilibrium point of the system. i. e '
SAA*¥—~MA=0,
{ Ay = —L(A.B.— 4,B,). (18
2f
Obviously, 4,=0 and A=0 are a solution of Eq. (15). In addition, it alsc has nontrivial
solutions. When 4, =3,=C,=0, Eq. {15) becomes
, 8o+ 8) A+ /B +g*C.=0,
| 8(4,+8)B,+f4.=0,
MHA+e)C,—RB, +8H 4,=0, (16)

| 4= —-—zlf—aA.B..
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Let y=4(A,+#), the condition that Eg. {l6) has a nontrivial solution is

y f dg
fooy 0 =y =(8grH+f)y—8fg*R=0.
s .—R ¥ !
Solving it, we obtain
XX,
! 3
| —*(X,+Xz)+17(Xl—Xg),

l(X +X )—; 3x.—X.,

where

(18>

. . TV
Auc

_ 2 (5“9*H+_f’ )”’
8fF\ 3 )
Substituting » inte (16), it is easy to obtain the following two equilibriumYpoints
, 84, =y—au,

34:=F / 2y(y—38) »

¥ ‘-':7«./ 2y(y—ada) » (19)

D

=
I

-+

Qe

0
1
n

= =9 o
* ety N2y (y—&a)

Similarly, we can obtain another two equilibrium points
A= B8,=C,=0,
dAd,=y—05#,
=tv 2y(y—487) »

e 20)
8B,=T i\/Zy(y—ﬁﬁ): (

8C =+ r= \/ 2y(y—da) ,

1t is obvious that the nontrivial solutions intersect with the trivial one, when y=3% or

Az ~—5f—,[(6u)’ — {8 g*H + f2)64].

The condition, under which the nontrivial solutions (19) and (20) exist, should be

{ y—=38>0 or y<<0, when 5a>>0;
y—38%<0 or  y>0, when §a<C0;

For the parameter AR, the existential domain of the nontrivial solution is shown in Fig. 2.
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According to the definition of the modules, the four nontrivial solutions (19) and (20}
have the same module value. The modules plotied against A% are given in Fig. 3. Two
catastrophe points at A= + A%, can be seen. I the state of motion varies along branch
I and A% is increasing, then at Ag==A#, the state of motion will suddenly jump from the
state shown in point P into the state shown in point M on branch Il. Thereafter the state
of motion will vary with Az along branch IL On the contrary, if Az is decreasing, then at
Afi= — A#, the state will jump back to branch I (from point N to point ). The occurrence

of these sudden changes provides a reasonable explanation for the genesis mechanism of
the pressure—jump and sudden shift of the wind.
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Fig. 3. The curves of module vs. Ag, where f=107% sec™!, g*A=10 m’® sec™,

S=4x10"* m and a=—%c,.

1V, BIFURCATION AND STABILITY OF THE TRIVIAL SOLUTION

In this paper the discussion about bifurcation and stability is confined to the trivial
solution. Therefore, we consider the cigen—equation of (12) at the origin of the phase space.
It is
A —8a —f 0 0 —dg*
g A 0 —F dg* 0

f 0 A —d 0 0
o f 8 A 0 0 0
0 —8H R 0 i —ém =0

A —f 0
| 0 F oA 0
| 0 R A

The left-hand side of this expression is a nine-degree polynomial. The above expression
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may be reduced to
AP+ A AL+ (S g*H + ) —3&8a Y + [3dal*+ da(dgrH + f2)y—(da )’
+3fg*R1*}=0.
Solving it, we obtain
A1=05
;'-:r..:1= "__ift
Acs= +i(X,+X,—5a),

o= X - XD H L X 2ew),

V=Y I = X i (X X 250).

According to the definitions (18) of X, and X, the real parts of the last two roots are positive,
i.e. Re (1,,)>>0, when Az*>Aql. Under this condition the motion will become unstable.
When Aa®<A@i, A will be pure imaginary, and the motion will become boundary stable.
So that the criterion for the unstability of the trivial solution is given by
AB> AR or Ag<{-—Ad..

It C,={fAg. /28" =[(g*H + f*/8)/3]/, the condition will become |Az|>
28 C%/Ft. When §,=0, it becomes | @,| >>28°C%/f* which agrees with Chao’s criterion.
Here C, is the phase velocity of the internal inertio—gravitational wave in the atmosphere.
From /,,, Wwe may gel a Hopf bifurcation. The bifurcation points and the angle
frequencies are
i AF=ARc, w=+td(C,+a); (21)

U A= — Adc, o=18(—Cy+1).
For the angle frequency c«, when the right-hand sides are positive, the corresponding solutions
are a forward propagalion wave, whereas when they are negative, the solutions are a backward
wave.

An example that shows the relation of the bifurcation point A%, with 8 and g*# js shown
in Fig. 4. Tt can be seen that Ag, reaches its minimum near d=2x 10~° m™. This
indicates that the internal inertio-gravitational waves are more likely excited near meso-
wavelength.

Formula (21) gives two bifurcation points. Now we only discuss the periodic solution
with angle frequency w=20(C,+ %), which is bifurcated at Az=A#..

Assuming that Eg. (12) has a solution in the following form

{ A=A0, A =A"sin(ot+a), A.=AVcos{et+al;
l By=0, B,=B"Ysin{at+ B3, B.=BVcos(wt+ f); {22)
C,=0, C.=C"sinf{wt+y), C.=C"cos{wt+yp).
Substituting them into {12) and letting y=5(AV'—Cy) we obtain

{ M(y)A=0,

Ay =) 8(4B, - 4B, (23)
2f

Qbwviously, if A and A}'’ are not all equal to zero, then it is mecessary that

det| M{¥3|=0.
This condition is equivalent to

i
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¥ —(FgrH+ )y —8fg*R=0.
Its roots are given by (17). Given y, we directly get
dAM =y +38C,. {24}
The curve of 84" vs. Ag is shown in Fig. 3.

54,

S
AZ:(m sec™d) /

30

20)

(U3 =
! —Al;

—5

2

u H ] § 3

S005m™»

Fig 4. The relation of Ag with § and Fig. 5. The curve of A,41, vs, Ag, where
g*H where f=1074 sec™!, F=1071 sec™!, §2=4x 107 m¢ and
g*H=10 m? sec™?

Using {23} and (24), we obtain
FA =8 ( A+ AD=2y(y+3Cy),

aaBlﬂ“:az(BHBs_>=z—f::—(y+acg),

(23)
Fem =s(Cit =2 =3 (51 8C,)
v 8 g™y ’
and
% sin(a—pg)=1, (263
oos(a~y)=1.

Eqgs. (24)—{26) are the variables to be calenlated in Eq. (22). In this case only one phase
needs to be determined. An example of the bifurcation is shown in Fig. 6.

Figs. 5 and 6 show that (24)—(26) are a subcritical Hopf bifurcation with hysteresis.
In the interval [ — AZc, A#%c] there are two stable states, which are represented by the
heavy curves §, and S,. In other words, when the stratified atmosphere described by the
model is at rest and the basic wind velocity difference between the upper and lower layers
is within the above interval, the rest state is stable for a small disturbance, and may be
unstable for a disturbance with finite amplitude. In the latter case the rest state may jump
into other states shown by the curve S, or §,. When AZ>Ad., the rest state is unsta-
ble. Any trivial disturbances will develop in catastrophe manner, i. e. if the system is
disturbed, the state of motion will change from the rest into branch §,, and thereafter the
state of motion will vary along curve §,. When Az— —A#,, the state will jump into
branch S, from 5,.
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Fig. 6. An example of the bifurcation, where f=10"* sec™, §*=4x107*m™* and
g*H=10 me ssc2, (MNote: the first arrow from the left should be
corrected to be upside down like )

It is easy to calculate the mean kinetic energy for a period or a wavefength, i. e

r;p,m ul’dizgé__rnfﬁ u*”dx=A‘é”+ lAIJ]Q__-”u,‘-[z’
2 o 2 |

(2% 6 FEFS a
£o=-2| v”dt=—§?g u”dx=%3m=||m|a,

2a Jo : 0
_ 9—‘2::,».9 “_ai\l ——46._ L ETP) (ik— 2 . wz “312 2 .
£s 2x jn (a: ) di= 23,{0 Bt ) dx = 2 ¢ @ Hhll*

It is shown that, when the scale parameter 8, the stratified parameter g*# and the geo-
graphical parameter f have been determined, the kinetic encrgy of fluid motion depends only
on the shear of the basic wind, Az, i e the disturbance energy can be obtained from
the ambient wind field. An example of this relation is also plotted in Fig 6.

In additon, it is uot difficult to see that when the basic wind velocity in the lower layer
is equal to the phase velocity of the inlernal inertio-gravitational wave but with oppasit
direction, 1. e. @,= — Cy, the periodic solutions will degenerate into stationary solutions, and
their modules are the same as that of the nontrivial solution described in the last section,
i. e. the expression of the kinetic energy of disturbance of the system is all the same.

v, CONCLUSIONS

In summary, we have the following results.
{1} The equilibrium poinis of system {12) have four nontrivial solutions in addition (o

the trivial solution.  If the difference of the basic wind velocity between the upper and
lower layers satishes the condition | Az|>28°C3/f*, then the siates of motion correspond -
ing the nontrivial solutjon will have a jurping-form catastrophe.

{2y If the zbove condition occurs, the trivial solution w 'l also loss stability, and will
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generate a subcritical Hopf bifurcation with hysteresis. It is shown that under the same
condition the rest state will change in catastrophe form as well, and internal inectio
gravitational wave will be excited in the interface of the two layers.

(3) The properties of the subcritical bifurcation also indicate that the rest atmosphera
could be unstable for a disturbance with finite amplitude. A jumping-torm catastrophe may
happen when [Az| <28°C/f7.
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