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ABSTRACT

The atmospheric dynamic equations have been tracsformed from the z—coordinate system into a
generalized vertical coordinate system by using a so-called DDD transformation method. Then the general-
ized system is assumed being pressure, sigma or incorporated pressurc-sigma coordinate system and corre-
sponding equations are obtained with the second-order accuracy. It is pointed out that the usual equations
are only of the first-order accuracy when their space—differential terms are approximated by central finite
differences. Therefore the usual forms of the equations may result in quite large errors on steep slopes of
mountains included in a model.

1. INTRODUCTION

Studies of topographic effects by using pumerical models have been made more and
more in recent years. The most evident advantage of using numerical models is easily to
do controflabie experiments. It is possible for people to test some physical factors and their

-effects for any times based on the properties of the objects in consideration and on obser-

vational data. What is more is that people can even do “null experiments” with the aid
of numerical models to enhance artificially some factors in order to give prominence to them.
Hunt has systematically discussed the importances of numerical models as experimental
tools!,

A series of problems will be encountered, however, when topography, especially large

.and steep mountain, is involved in the model. The appropriate treatment of those problems

is the key to success of the numerical models with topography. In the early models with
topography, computation instabilities often took place because of the unsuitable treatment

-of mountains involved. As a resuit, the mumerical predictions by the models with topogra-

phy were usually of worse quality than those by the models without topography. However,
after continuous efforts over more than tweaty years some problems of more importance
in the models with topography are being solved perfectly for the time being. In order to
introduce topography in numerical prediction models there would be quite a few difficulties
if the conventional pressure coordinate is used), The most common selection is the so-
called topographical coordinate system with the ground surface being a ceordinate surface.
In the studies of large-scale and synoptic-scale weather systems, for instance, we can choose

sigma {c) or incorporated p-o coordinates®—*). On the selections of vertical coordinates,
‘Kasahara has a detailed discussion in his paper™™). However, whatever coordinate system
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is sefected, the original equation set in z-coordinate has to be transformed into that in the
new coordinate, which is called coordinate transformation. The transformed equation set
should be equivalent to the original one. It means that the transformation must be
reversible. In other words, the original equations will be obtained by simply replacing
the selected vertical coordinate with z-coordinate. Generally speaking, the reversibility is
strictly satisfied when transformation is made by using differential regulations. In grid
numerical madels, however, we use finite difference equations instead of differential ones to
make time-integrations, and thus the completely equivalent equations in various differential
forms obtain somewhat different computable results when they are finite-differenced for
calculation. This is because that we have to use the grid values of some physical quantity
A and its vertical variation in the topographic coordinate system in order to calculate
horizontal derivatives of 4 in the z-coordinate, where the calculation of the pressure
gradient force term scrves 28 an example. In order to reduce the errors in transformation
we should utilize as much as possible the transformation formulas with higher accuracy
and less trurcation error to transform the horizontal derivaiive terms despite the identity
of the formulas in differential meanings.

Two schemes can be used to transform the differential equations in the z-coordinate
into those in the topographical coordinate. The first can be called differential-transformation
scheme in which the derivative regulations for implicit functions are directly used. This
scheme is well-known to us and we call it classical scheme in this paper. The second can
be called difference-transformation scheme, in which the differential equations in z-coordi-
nate are finite-differenced with certain accuracy in certain horizonial coordinate system to
the corresponding difference equations which are then transformed to the topographic coor-
dinate syster (difference process) and become the new differential equations by taking limit
(differential process). For calculation the new differential equations need to be finite-differ-
enced again (difference process). Therefore this scheme can also be designated as the BDD
scheme. Tt is easy 1o verify that the equations of the same forms as those in the classical
scheme will be obtained in the DDD scheme if the difference formulas of the first order
accuracy are used in transformation. This means that the classical scheme is the commonly
used one and strict in mathematical sense though, it reduces the accuracy of the equation
set in z-coordinate to the first order due to the transformation.  As a result, it is very
difficult to improve the computational accuracy of the new equations,

From the above discussions we know that the higher accuracy of difference scheme we’
use, the more accurate new equation set is yielded in the topographic coordinate. However,
the difference scheme with too high order will eomplicate the forms of equations. It should
be determined, according 1o the properties of space and time variations of physical quan-
tities, to use what kind of finitedifference schemes. For example, the local time derivative
term requires only the transformation formula with the first order accuracy, but the hori-
zontal detivative terms require the formulas with the second order accuracy, the pressure
gradient force term even requires that with the fourth order accuracy.

The first, the second and the fourth order finite difference formulas in the A-type

horizontal coordinate system are listed belowi™,

CAA ﬁ/aA) _ﬁd_(_aji) A Ad ,
(\#EJT);_L?}E' 2 0z \ 35 /o {fist order) (1)
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24 :( 24\ __ 2 [(,_ g_]
(83 ), ds )v ds [(z 7) gz » (27
d
=(Lf),, — %(z%) +z 65(“5{!;) {second order) {3
EZANE VAN 247 ] Li(8)
(58)2 3(L s}u as[(z —z) 3? ds /a
3
- —(?S—[(z—zn) gf Jﬂ} {(fourth order) (4)

where 8.4/8s represents the central-difference with doubled grid distance, 5 is the argument
‘such as the time ¢, the horizental coordinates x and y, the subscripts z and 5 represent
the z- and the new p-coordinates, respectively, 4 could be any variable or expression.

z, is the height at the computation point, (%"i—) is the mean vertical variation of A
2 /0

between z, and =z

The nuclear problem in topographic coordinate system is how to calculate the pressure
gradient force appropriately and accurately. Many meteorologists have done a lot of
careful and efiective studies on that problem!*—'3), So far there are three schemes for the
calculation of the pressure gradient force (sometimes abbreviated to PGF hereafter), i. e. the
special difference scheme such as Corby's scheme, the so—called hydrostatic subtraction scheme
and the interpolation scheme. The Corby’s scheme is equivalent to the second—order accuracy
in fact, because Corby took into account the vertical distribution features of the atmospheric
-quantities such as pressure and temperature, although his transformation formula is based
on the classical scheme. Yan and Qianl™ obtained completely the same scheme as Corby's
by the DDD scheme shown in Eq. (2). The hydrostatic subtraction scheme tries to change
the small residual of two large terms into that of two small terms, but it only subtracts
the mean geopotential height of an isobaric surface, therefore the accuracy of the PGF
calculation has not improved much. [Its utilization in models is then decreasing.

As far as the interpolation scheme is concerned, it is a good scheme, though not very
much in consistence with the transformation principle. In this scheme, the geopotential
heights at isobaric or horizontal serfaces are gotten by interpolation from those at
topographic surfaces and, therefore, it is quite accurate especially in the free atmosphere. The
main problem is that sometimes the height values under the surface are required in order
to calculate the PGF at the coordinate surface near the ground and large errors may result
from extrapolation especially when diabatic heating effect is included in the model, and
temperatures ncar the ground will then change drastically from space to space.

In this paper the emphasis is put on the general forms of the atmospheric dyramic
equations and their accuracies in calculation. The last section will be devoted to the veri-
fication of some concepts with a computation based on a set of ideal data.

[f. THE FORMS OF ATMOSPHERIC DYNAMIC EQUATIONS IN A GENERALIZED (n) COOR-
DINATE SYSTEM

The dynamic equations of atmosphere in the z-coordinate system can be written in the
following flux forms:
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—a{;—;‘—+v-puv.+ a—‘g‘}+g—£=pF=+m‘v, (5)

"”af;” +V-pvv+g%”-+%=f3p‘y_ﬂfﬂs (6)

%=—pg ’ (7)

—gf—w-pv +_3_22L—_-0, (8)

aé’:T +7-pTV +L§‘g.=ﬂ.:; +pF 1 (9)

_%%‘.Lw-pqv + a—%—zﬂ=p(E—C)+qu, (10)

where the designations are conventional,

In order to transform Egs. (5)}—(10) to the new coordinate system, We use Eq. (2) or
(3) to transform the horizontal derivative terms and Eq. (1) the local time derivative.
At the mean time we integrate the equations with the vertica 1 coordinate z from z, to z,

by using the next formulas:

RRDTTE N A VAN "N >
2| oz a:,,(A z Jom—n)— 4, B+ 45 ()

rl V.Adz= V‘T(A -‘g%) <(m —1:) — Vsl (2 —2;) A1+ EIREA —250)4:0, (12)

Jzs
where A4 is any quantity, subscripts z and 7 mean that the derivatives are in the z- and
the y-coordinate systems, respectively, ¥ represents the gradient or the divergence operator,
subscripts 1 and 2 represent the values at the coordinate surfaces ;, and 7,, and the O
represents the value at the point in question. In Eq. (12) the 4, and A, are the average
values of A at the n, and p, surfaces between the O point and the adjacent point. The
above designations will have the same meanings in the next content.

By the method used in [13] and the hydrostatic egquation we can get the dynamic
differential equations of atmosphere in the n-coordinate at last:

() =§$n—(zg—f)——§n—(zai€ VoL (Forfo)+R@ » (1)
< () =5—§:(z%’—)—§7—(z L PR ONNCY
%= l—pg g; , (15)

#(1)=R(1), (16)

2(T)= p—%ﬁ—(iﬁf—:—+FT)+R(T}, an
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< (@)= p ZAE-C+F)+R(@, (18)

where

&(A) = —— (pWA)-I-Vn'(p > AV) an(p a Aq) (19>

is a differential operater, A counld be any quantity or unity, # is the vertical velocity in the
n—coordinate system.
R (4) is a correction term with the following form:

R(AY=—£ (97 [z~ 2)(p A~ ooV} (20)

=—a‘%{vq-(szV)—zvq-pAV—pAV-r-zV+pzAVn-V}. (207>

The pressure—gradient force (PGF) terms in Egs. {13) and {14) have changed their forms
because of integrating by parts. The unchanged form obtained after transformation is

PGF[g=-—v( 3” Vol p(z—20)]= —¥ {(p %Rif}

P p RT)

——;}—Ep(z—zo)]}- 21y

The Egs. {13)-~(18) are called the atmospheric dynamic equations with the difference—
differential consistence. All derivative terms except the local-time term are of the second-
order accuracy. The R({A4) term vanishes if the first-order formula Eq. (I) is used for trans—
formation, It is also easy to prove that the R (4) term will tend to zero in the differen—
tial case and the equations here will completely be the same as those in the classical scheme.
However, the term R (4) will not be zero certainly in the difference form. Therefore the
accuracy of the equation set here may be different from that of the classical scheme.
Besides, Eqs. {13)—(18) will take the original forms of Eqgs. (3}—(10) if we set p=2z.

The Egs. (13)-(18) have universal properties because 7 is not connected with any
assumptions. Especially if Eq. (13) is replaced by the nonhydrostatic form, then it can be
used to study the small-scale phenomena in the atmosphbere. In this paper, however, we
will only discuss the hydrostatic motions. From Eq. (15) we have

9z 1 8 {22)

on g o’
Substitute it into Eqs, (13)—(19), a set of equations without the explicit density is obtained.:

8 {(,Pp 2 ap\_1 ap

i(u)— ( Er ) “on ( axﬂ) 9 on ZE(F o+ fo)+ R(u), (23)
= PpN_ 8 [, 2p\_1 2p

5(0) ayq( 317 ) an (zayq) g aﬂ (F f")+R(U)1 (24}

2(M)=—1 LKL oro)rFe 4R, (25)
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1 epg o
Blg)= TQT WKE C+FH+R(@) (26)

with Eqs. (15) and (16) being unchanged.
The differential operator £ () has the following form:

(A= LI 2 aP-) ( ap j.( a0 . 57
L) gl ot L‘g an )TV Ay V)+ o7\ % ”)' (0

In Egs. {17) and (23), wzcé% can be written as
mz_gai + V- (p Po)v+v—a£ . g "~“3)

By now we have gotten the complete equanon set in the p—eoordinate system. . The
diabatic heating term ¢, the evaporation £ and the condensation C, the eddy diffusion
terms F,, F,, Iy and F,, are not. discussed- here. In the next sections we will put our
focus on the situations in the p- angd the g-coordinate systems, respectively.

I1I. THE EQUATIONS IN THE. PfOORDmATE SYSTEM

In order to get the dynamic equations in the p—coordinate system it is required to
replace gy with p. Thus, the equations in the previous section will change into -

sm\u)!——aﬂu FF+Ro8) (29)
[ l,v\l})__-é?ﬁ—fﬂ'l‘F +Rn U)| . : (30)
. 3y s
L D=L e, Cooab
. ,g‘p(q)zE—.C+Fq+R'p qn e
‘o o ) =R N =)

it . PR [ ".'":':' N cor o Lo ed e
1~y A ' Tinfe oo ' . ‘;, v are

&Fo'A)= A +».n \AV +—~'(AGJ,“ vl ~{35)

i}

the correction term VR T "~‘ : I
i ; IS ISR
Re. -’4\_ {VP [ ¢' d’o)(PA Po-Aij} (36)
" 1f the PGF term takcs the form of Eq (21) then '

Rt Lo PGF ‘—VP{RT)'*V u—(‘ﬁ ¢'o)f-’ ; R R £ 15

AL A - B S .(1-.l'_ ‘\ .,-F J'> \-..'f-- .,”5_ :’ .
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L2 c4_ G2 = 2 g
Ve ap (¢ ¢n)Pj——a?[pr¢]—Vp¢+P—53VP¢

=0sg+ 20> 28 0,959, (EL }v8-va(aT). (38)
Hence we still get

PGF=—V,¢. (39)
That is to say, the two methods of the PGF transformation have the same result in the
p-coordinate system.

From Egs, {(29)—(34) we find that the only difference of the equation set in the DDD
scheme from that in the classical scheme is the correction terms in Eqs. (29), (30), (32} and
(33). In Eq. (31) there is no correction term because the quantity p7 is proportional to the
vertical pcoordinate. In fact the state equation yields pIT'=P/R, the coordinate surface
in the pcoordinate system coincides with that of o7 and the correction term R,(7) shouid
be exact zero according to its definition Eq. (36).

Now we are going to discuss the characteristics of the correction terms. In order to
save space, we take the continuity equation as example. It has the foliowing form:

R R L ILCE DO b 4
Integrating it with respect to pressure from p, to p,, we get
, o=, = |V Vdp = (70 L8 — 40 (o= a0V
—Ve-[{d—d:)(p—p oIV}, (41}

where subsctipts | and 2 mean the values at p, and p, surfaces, respectively.

We can see from Eq. (41) that the form of the continuity equation here is quite differ-
ent from that in the classical scheme. Two correction terms are in existence which have
close relations to the slopes of the p, and the p, surfaces at the point in question and to
the baroclinicity of the atmosphere. It iz then able to infer that some errors in the o
computation will result from the classical form of the continuity equation when the weather
systems develop very severely. We know that the vertical velocity is a key quantity in
weather forecasting and, therefore, the errors in the @ field will influence the quality of
the weather predictions.

Assuming that the slopes of the p, and the p, surfaces are independent of the horizontal
coordinates, the density of the air is only the linear function of the height and there
exists AgAp<0 in the atmosphere, i. e. the density decreases with the height, then we
have the simplified form of Eq. (41) as follows

. sz v‘

m,=w,—}P V-Vdp+{{1AdAp V- V]. - [ AdAp[¥ -V}, (42)

With the further assumption of |AgAp|,={AdAp|,, from the above equation we obtain
Py

ar=0,~ | V- Vdp—|A8AD | (T+-Vi=Ve Y.}, (43)

where the last term shows that the upward motion at the p, surface increases for the
weather systems with the low-level convergence and the upper-level divergence, and vice
versa. If the slope of the iscbaric surface at the point in question is zero, the correction
teem then is zero too, it is the case that the p- and the z—coordinate systems there coincide.
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Assuming p, =0 and p,=p in Eq. (41

) and w,=0, p=0 at the upper boundary of
the atmosphere, we obtain the vertical vel

ocity at any isobaric surface 2, that is
(P
a==| V-Vdp—v,-Ld— 4 (o p)V1. (44)
IV. THE EQUATIONS IN THE o-COORDINATE SYSTEM

In the o—coordinate system we define

o P"Pe
O—I—_p—c; (45)
where p, is the pressure value of a certain isobaric surface, p, is the ground surface
pressure, When p =0, we obtain the same definition of the o—coordinate system as that
proposed by Phillipst®). From Eq. (45) we have

%= H ] (46)

where pt=p,— p, is the pressure thickness of the g-coordinate system.

Replacing 5 with ¢ defined in Eq, (45), we can directly obtain the equaﬁons in the
o-system from those in the p-system: '

“ow=—2(p14) +%(a¢%)+?f(F,+ﬁ)+Ra(ﬂ), Cun
Loy =50 018) + 2 (06 22 )4 pi (P, )+ R, o), )
& (T)= p?i%—(e+m)+F7]+R,(T), (49)
L AP=p N E-C+F)+R,(q), (50)
&, 1)Y=R, (1), . (51)
2 RT -

B at+p/pt’ (52)

where the operator

L) =50 PV, AV + 2 (1), (53)

the correction term

Ro()=~- [V, (4~ $)(pA~ pe A)V1. (54)
The other form of the PGF can be gotten from Eq. (2), that is

PGF=~9,(p*RT) ——2{9,L(apt+ p.) (6 — 431}

=~V APIRT + -2 [(op+5)(6 - )1}, (55)

which is somewhat different from that in Eqs. (47) and (48).
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The comparisen of the equation set of (47)—(52) wilh that of the classical scheme in—
dicates thal the main difference beiween the two sets is also in that there are correction
terms in the DDD scheme as in the p-coordinaie system. Here we again discuss the cor-
rectios term in the continuity equation (51), namely,

‘
RA1)= #%'[Va'(dj‘"(ﬁn}(!:’_ﬁ?o)vl (56}
By integrating Eq. (51) with respect to & from 0 to 1, we pet
apt .
"a_f";* = pfﬁ'o‘ Voo
where the boundary condition at ground, i . 5=0 at g=1, has been used.

From Eq. (57) we see clearly that the correction term can change the time tendency
of the ground surface pressure, which does not exist in the classical scheme. By the use of
similar method as in the p-system, we have the conclusion that the correction term will
increase the pressure at the windward slope and decrease that at the lee side. Such an
effect js refated to the wind direction and to the topography. Therefore, in a long-time
integration, it will be important.

If we take p, as an isobaric surface higher than mountains, and if, above p,, we use
the p—coordinate system and below p,, the g-coordinate system, then we get the so-called
incorporated p-a coordinate system and its dynamic equation set. Because the equations

in the p—- and the g—coordinate systems are independent of each other, the only requirement
for connecting them is to set up the conditions at the interface of the two systems. By the

definition of @, we have

*
22 4y, Lp-pVI+ast =0 5 FUo (=Y [apt. (8

€ ———

R LCRs I CET DICET LR (57)

m=

At the surface with =0, p=p, and @ =0, then )
' 0, =82 0T S (39)

where

o.= " 9V ap =V L(d $u) (0= pdVe, (803

and the subscript ¢ means the guantities at the p=p, surface.
Substitating Eq. (60} inte (57), we obtain

ap* e S kyd ;

_a?izf.i “?.Vdpfva"]ﬂ PsvdU—V&[(¢:—Qs_sn)(Pa‘“P,n)V,]. (61)
Therelore, the onty difference of Eq. (61) from the tendency equation in the !('I:)lds'sical
scheme is again the last correction term. : L

I *
After caleulation of %ﬁ;— by Eq. (61), we can integrate Eq. (51) from g=0 to_ o

and get the vertical velocity 4, that is . . .
. m 1 6P’: _{U *Vd + T l_ ( o \V n=0a .
F=d, oF o _Et_+v° oﬂs a+Va.-Lid—da){p— ) VIIZS (52)

The above equations and procedures constitute, respectively, the basic equations and
tye solution method of the DDD:schenfe invthe p-o Tincorporated“ctordinate system. '
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Y. VERIFICATION BY AN IDEAL DATA SET

In order to give the readers a quantitative understanding of the previous'discussions,
we design an ideal data set. The geopotential height and the pressure are related to each
other by the following cquation: ‘

2Py =2t ST+ T2 In( ). £, (63)
where o and T are the height arld the temperature at the 500 hPa level, respectively, which
are determined by

Te=273.0+{p—g, DT, —g*/Ar— DT - cos[B+(A— )], (84)
=580.0+ (g —go) Dz, — ¢ fAdz— Dz-cos[B,{A—- 4,20, . (63)
where @ and i are the latitude and the longitude, respectively, then ¢, and i, are the
reference latitude and longitude, and the others are all constants introduced as parametcrs.
With different values of the parameters, the different temperature and pressure fields will
be obtained.
We assume that the temperature disiribution in the vertical direction satisfies the
following equation:

T(p)=T.ty- ln( 5330) (68)

where p is the constant with a value of 4328 K above the 300 hPa level, while with a
value of 50 K lower than that level. Then we can determine the temperature at any level
from Eq. {60).

"Having given the surface pressure distribution, we can obtain the surface height z,
from Eq. (63). The surface pressures are assumed to be

p.=600—510A4*-+960.4 {87)
with . : .
A:{W_‘PU)IXAW'{_(A_A\)):/AA, (68)
where A, and A, are constants.

The computed p, distribution is listed in Table la, where the pressure larger than
1000 hPa has been set equal to 1000 hPa. Table 1b is the z, gradient distribution. It
is seen that the largest value of the z, gradient is 0.33%, which indicates that the slopes
are not very steep. The maximum z, value is about 4300 m,

Table 2a and 2b show the ideal distributions of the geopotential height and the tem-
perature fields at the 500 hPa level, respsctively. Between 70°E and [HO°E there is
wavy flow pattern and the atmosphere can be considered as a barotropic one. The same is
tiue of other isobaric surfaces.

In order to calculate the correction term we need a numerical model. Thus we make’
use of the p—o incorporated model as given in [I13]. The geostrophic wind is computed
first and then used for calculation of Rp{u), R,(v) and R, (v), R (T) terms in the p— and
the g—coordinate systems. Comparisons are made of these terms with the corresponding
flux ones which lead to the correction terms. It is found that, in the p-system, both the
magnitudes of R,{z) and R,(v) terms are about three orders smaller than those of corre—
sponding flux terms. In the g-system R {1), R ,(v) are at least one order smaller than the
flux terms. Table 3a and 3b show the distributions of ¥_:(p*uV¥) and R,{(u), respectively,
at the fourth model level, We can see that the magnitude of v,-(p*u¥) has the ord:r

.of 10-* to 10-%, while that of R (@) of 10-%. The case for R, (v) is the same. The -

LA B e roma T - T TP TS T ]
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distributions of ¢;(p*TVY) and R (T) are shown in Table 4a and 4b. It js seen that
although generally R,(T) is also smaller than v;{p*TV), the differences are not over
one order. For example, at some points to the north and the south of the z, maximum,
R_(T) reaches 0.6—0.7 with the same magnitude as the V3 (p*7T'V) term.

Table la. Surface Pressure Distribution (in hPa}

\\‘N\\‘E\j T0° 75" 80° 85° 90° 95 100° 105° 110°
50° 1000.0  1000.0  1000.0 993.3 9718.6  993.3 1000,0  1000.0  1000.0
45° 1000.0 995.8 907.9 835.5 808.1 835.5 9071.9 905.8  1000.0
40° 1000.0 914.6 788.4 693.0 §58.0 6930 7R84 914.6  1000.0
35° | 1000.0 879.5 740.5 637.6 600.0  637.6 40,5 879.5  1000.0
30¢ 1000.0 914.6 788.4 €33.0 658.0  653.0 788.4 914.6  1000.0
25° 1000.0 9933 907.9 835.5 808.1 835.5 907.9 995.8  1000.0
20° 10000 1000.0  1000.0 9933 978.6 5933 1600.0 10000  1000.0

Table 1b. Z, Gradient Distribution {in 107%)

\\\ E | o ° o ] o © » © o
N ] 0 75 BO 83 90 95 100 10§ 110

50° I oo 0.13 0.28 0.31 0.31 0.31 0.27 8.13 0.13

45° 0.13 0,13 0,28 0.31 0.31 0.31 0.27 0.13 0.13

40° 0.27 0.27 0.33 0.28 0.23 0.28 0.32 0.26 0.26

35 0.29 0.29 0.30 Q.19 0.01 0.20 0.30 0.29 0.2¢

30° 0.24 0.24 0.3 0.26 0.22 0.26 0.2 . 024 0.24

25° 0.11 0.11 0,24 0.30 1) | 0.30 0.24 o1 0.11

20 Q.11 0.11 0.24 0.30 0.31 0.30 0.24 0.11 0.1

Table 2a. Geopotential Heights at the 500 hPa (10 m)

T E 70° 750 80° 85° 90° 9s°  100° 105 110°
B
50° s64.6 5682 S69.6 5682 5647 5611 S59.6 5611 5646
45° $69.4 5730 5746  S733 5658 5662 . 5646 5659 5694
a0 5.0  ST.8  SMa4  STL9 544 5709 5694  SW7 S5
35¢ 5787 8.5 5840 5825 510 5754 5M0 5154 ST
30 583.1  SB6.8  588.4 5870 5834  580.0 5784 5800 583
25° s87.4 5910 5925 5913 S8IB  SB42 5826 S8l 584
w sA.6 952 5966 5952  S9L7  S88.1  SB6.6  SBB.  S91.6

Table 2b. Temperature at the 3500 hPa (*C)

Ty E i 75 8- 8 S0t 95 100° 105 110"
-
50° —-3.8 —2.4 —1.8 —24 -39 —~5.2 —58 —5.2 38
45° 25 -1.1 —0.7 -1.4 —2.8 -4.3 -4.7 -39 -25
40° —1.2 ~0.0 0.6 0.2 —-1.3 -2 ~3.4 -2.8 —1.2
35° 0.0 1.1 1.5 1.3 —0.3 ~1.5 —2.1 —~1.7. 0.2
30° 1.2 2.4 3.0 2.6 11 —0.3 —1.0 —0.4 1.2
25" ;2.3 37 4.1 34 2.0 0.5 0.1 09 2.3
20" b4 48 54 48 34 2.0 1.4 2.0 34

P
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Tabk 3a. Distribution of Y. -{p,*-u-¥) Table 3b,  Distribution of R {w)
(107 hPa m §-2) {107 hPa m s°%)
N E . ~, E
75" 80" 85  40° 95 160" 1057 757 80° B85* 9p°  95° 100” 195°
N N
45° |-2.0 0.6 1.7 2.2 2.7 —D.5 3.7 i5° —0.3 0.0 —0.4 —0.5 —0.6 —0.0 0.3
40° |—3.6 —2.53 —2.0 0.6 .2 2.5 —4.8 40° | —0.6 0.2 0.5 0.3 —0.2 —0.2 0.7
35 |—4.7 —5.5 —-2.4 5.2 1.0 3.5 —3.8 35°  |-0.3 0.8 0.4 0.3 —0.2 —0.3 0.4
30" —4.4 —4.0 3.6 14.0 140 4.0 —4.9 20° 8.2 0.2 —0.1 —0.4 —0.6 —0.2 0.4
25' —4.3 0.0 7.2 13.0 9.1 —-0.0 —6.3 259 '—0.6 0.1 0.1 —0.3 —0.4 —0.1 0.2
Table 4a.  Distribution of y,:(p,** TV} Table db.  Distribution of R, (7)
(10~? hPa K s7) {10"t hPa K s7%)
E E . .
767  40° 85° 90° 95° 180" 105° 75° 80* gs*  60° 45 100 10

N N
45° | ~1.6 1.8 —1.6 —0.8 1.2 1.7 —0.0 i5° | 0.1 0.0 0.3 9.7 0.5 —0.0 —0.2
i0° [—3.2 —3.4 —3.3 —-1.7 1.7 3.4 1.8 40° & 0.4 0.0 —0.6 —0.2 0.2 —0.0 —0.4
35° [—4.3 —4.3 —2.4 0.9 3.8 4.3 2.3 35° | 0.5 0.0 ~0.4 0.0 0.4 —0.0 —0.5
30° {—4.1 ~3.8 —0.0 4.2 5.4 3.8 L.4 30° 0.4 0.0 —p.1 0.4 0.5 —0.0 —0.4
25° 1—2.8 —2.3 1.3 4.8 4.5 2.2 —0.8 25° p.2 0.0 —0.5 —0.6 —0.2 —0.0 —0.2

We have made other calculations with different distributions of temperature and geo—
potential height fields. The basic results are similar to the above. However, for the
atmosphere with stronger baroclinicity, R (1) is of more importance. We omit the results
here for space saving.

From the above computation results and discussions we know that the classical form
of the dynamic equation set in the p-system has enough accuracy, so it is not necessary
to add the correction terms to the classical equations of &, v and g, unless the weather
system develops very severely and the results in very large divergence. In the o-system,
however, since R,(u), R.(v} and R,(T) are relatively important, we had better not omit
them in the equations, especially, R {T) in the thermodynamic equation. In the verifica-
tion test for the ime being we only use geostrophic wind instead of real wind which can
be very different from the former, therefore the importance of the correction terms may
increase in the real atmosphere. In order to improve the accuracy of calculation and, as a
result, the quality of weather forecasting, it is mocessary to include correction terms in the
a-system, especially for long-time integrations.

The conclusions in this paper are derived from the A-type horizontal grid systems.
However, they are universal, to some extent, for other types of grid systems as well. We
will use the dynamic egquations obtained in this paper to carry out more numerical
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experiments in order to discuss the effects of the correction terms on the real atmospheric
processes.
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