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ABSTRACT

The method of quadratic discrimination through orthogonat transformation is introduced to optimize
guadratic discriminant function, which bas been proved more effective than the method of stepwise multip'e
discrimination. 1t is noteworthy that, in the case of a large number of predictors, it is better to make a
preliminary choice by using stepwise multiple discrimination or stepwise regression so that the calculation
can be made more stable and the effectiveness of diserimination can be improved.

I. METHOD

Assume that the vector of predictors X ={x,, x,, ..., X,)" satisfies the p—dimensional
multivariate normal distribution and the predictand is divided into two categories @, and
@, then the conditional probability density functions can be represented by

P(X/OJI)=JV|(:“(1) y Z(1D))s P(X/mz)=N:(ﬂ‘C2),2(2)). (1)
where u(1), 2¢(2), (1), Z(2) are column vectors of mathematical expectation and covari-

ance matrices for the two categories, respectively.
The equation of the discriminant function can be written as

Dix) ~ inBRE) A (% ()" B (@) (X (2) ~ (X1 B

x-un]-+m HEE (2)

X can be classified into two categories: the first category if I{X)}>0 and the second one
it D{X)<0. In Eq. (2) the superscripts T and —1 indicate the transposition and inverse
operations, respectively, and the symbol | | represents the determinant of a matrix. No

-assumption that E(2)= E{l} is found in Eg. (2), thus D(X), composed of the quadratic

functions ©Of X,, X5 +, X, is called the quadratic discriminant function so as to
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distinguish from the linear discriminant function on the assumption that X(1)= X{2). In
Eq. (2) the inverse matrix is involved, which is not easy to calculate. Refs. [1] and [2]
present the methed of eliminating the inverse matrix while expressing D(X) as

L »
D(X)=Z Z a;1%:%+ Zb;xi+c . (32

=1 j=1 i=1
There are specific formulas to caleulate a,y, b;, ¢ (§,j=1.2, ---, p). However, when p is latge,
D(X) involves too many terms to be calculated, and some of the terms may not be ne-
cessary to provide adequate discriminant information. In order to overcome this disadvan—
tage, we should reduce the dimensionalities of X . Thus, it is helpful to extract the principal
component of X, that is, the covariance matrix should be diagonalized. This can be realized
by the following methodfl.

First, move the origin of the coordinate axes to the point in space of the first mathe-
malical expectation. If the first covariance matrix is a positively definite (generally, so is
Z(13), turn the coordinate axes so that XE(1) is diagonalized. Then compress the space
of the predictors in order to transform the diagonalized matrix into an identity matrix, and
finally rotate the second covariance matrix Z{2) into a diagnoal form while E(l) remains
an identity matrix. These three steps can be written as

X—ull); (4)
AX(1)A7=1; AR(2)AT=A, (5)
where 1 is an identity matrix, A is the diagonal matrix with clements being A,, A, 04,
Thus, it is easy to prove that i,,1,, «--,1, are given by p roots of the following equation
system!!
fZ(2)—2Z(1)[=0. (6)
Transformation of matrix A may also be obtained from (4) and (5) (see section ITI).
When A is determined, the linear transformation

Y=(y)=AX-u(1)) (7)
(m)=A(u(2)-p(1)) (8)
can be accomplished. From (5) we obtain
lan(l)L_ i W (9)
From Egs. (5), (7) and (8), we have
(X—p1)TE (DX -p(1))= 23". s (10)
X=p(@D) B DX -p(@) = DA +mi—zym). (1)
Thus, D(X) may become =
%i( y’:+%€.v‘.+m‘m2m‘y;)) , (12)

1) In Ref. [4], the diagonal elements of diagona! matrix which satisfizs conditions (4) and (5) are the:
root of the | £(1)— A 3(2)1 =0. However, this result is not correct.
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or
r
DY)y= XDy, (13)
r 1¢ ] 1 2 2
D\yi)::i[\]n)n—'y_d +T(yd +m1—2miy.-)). (14:]

" We may classify X as the first category if D(Y)>0; and as the second category if D(Y)<C0.

II. ESTIMATION OF INFORMATION OF VARIABLES

Eq. (14) is the quadratic function of the components y,, y., -, ¥, of Y after the linear
transformation of X, and is also a quadratic discriminant function. If transformation matrix
A is determined; Y can be obtained. The merit of Eqs. (13) and (14) is that the contributions
of y, to the discrimination of velues of the function are independent of each other. Thus,
if the classification errors of p, can be predetermined, the number of predictors can be

P
reduced. It is adequate that the summation 2 is performed only for those y; which

=1
are more eflective on the discrimination. Thus, if »;, can be arranged according to their
discriminant efficiency, then the discriminant functions may be optimized. By using the
Ku'tback divergence*? of y,, the discriminant errors may be roughly estimated,

[div], = jp{x/ca,)ln g&‘%dm j P(xfmz)m%dx, (15)
X

X

where the subscript p denotes the number of predictors. The discriminant errors are de-

creased with the increase of [div],.
With a normal distribution, the substitution of {1} for P (X/s.), P{(X/w,} in Eq. (I5) and
integration of (15) will yicld

[divd, =t ((E()— BE@)E(2) - E-(1) + () —w(n)y7 (B2

- (u(2)—-p1)) (163
where “tr” denotes the trace of the mateix in Eq. (16).
Assuming that E(1)= X(2)= X in Eq. {16) is given and [div], becomes the Mahal-
anobis distance D} in the linear condition.
By using Eq. (5), Eq. (15) becomes again the following form

Ldivl, = %g(mﬁ (1+%)+(]..—+ -;_17—“2))=Z(div), ’

where
(div),= %"[m (1+-;17)+(A;+ %—Z)J ()

Divergence [div], is also reduced to the sum of the composed predictors. This means that
{div), is the divergence of the composite predictor y,. Thus, substituting m, and 1, of the
corresponding predictor y, into Eq. (17) can obtain {(div),, {=I, 2, .-, p. Then, the qua—
dratic discriminant functions can be optimized upon arranging ., ¥, -, ¥, according




128 ADVANCES IN ATMOSPHERIC SCIENCES Yol, 3

to the magnitude of (div), and substituting them into (14). Therefore the best quadratic
discriminant function can be found in each D{y,) or the composite D{y,).
NI. PROCEDURE FOR CALCULATION
The matrix of the initial data is given as follows
X={x;), G=L2,+sp3i=1,2y,n)
where p is the number of the predictors and » is the sample size. The predictands are di-

vided into two categories: @, and w,; m, is the sample size for o, and #, that for @, n, +
n,=n

(1) Computation of the mean vectors and covariance matrices for the two categories

The mean vectors, which are p—dimensional vectors, are represented by u{1) and u(2)
for the two categories respectively. The covariance matrices, which are symmetric matrices
of pxp dimensions, are represented by X(1) and X(2) for the two categories respectively.

(2) Computation of the characteristic roois of X(1} and the corresponding characteristic
vectors

Let the characteristic roots be 1, 2, -+, p. The characteristic vectors are used as the rows
to compose matrix A'Y. We have
A(I.] —_ (a“,m) '

where @ | is the fth component of the characteristic vector corresponding to the characteristic
root £, of X{1). By using the square root /¢, of the characteristic root £,, a diagonal

matrix of A® is composed. The diagonal elements of A® are v/ ¢, , i=1,2, -, p,
the others bemg 0. Thus

A . ATU=Q,
(3) Computation of the characteristic roots and vectors of QE(2)QT

Suppose that 3,, A;,-,A, are the characteristic roots and (a\}' a\% --- @\’)) are the
characteristic vectors corresponding to A,. By using p characteristic vectors, the matrix
A® is composed, i. e.

Am:(ﬂfim)p (i=1,2,, p3 f,=1,2:'“!f")
() Computation of the matrix A=A.Q

Matrix A, which is the transformation matrix, can certainly satisfy Eq. (5), that is,
2(1} can be reduced to an identity matrix and X(2) to a diagonal matrix.

(5) Linear fransformation
A (ﬂ(z) 4“(1)) = (mlsmus e !mP)T
(6) Computation of divergenece (div);, i=1, 2, -, p

The computation formula is Eq. (17). Arrange (div), according to its magnitude and
regulate 1,, m, corresponding to {div),. This step is, in fact, the regulation of the rows
of A.
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{7y Computation of p-composed predictors y, with i =1, 2, +., p

We have

(yuyu sJ’P}T_ '(X—Fi(l))-
The discriminant efficiency of p-compased predictors has been regulated from high to low.

(8) Computation of discriminant functions

The computation formula is shown in Egs. (13) and (14).

1¥. CASES, COMPARISON OF METHODS AND APPLICATION TO WEATHER PREDICTION

In order to predict the total rainfall during June through August (R,.,) in North
China, the mean rainfall at the three stations of Taiyuan, Jinan and Tianjin in the same
period is used as the predictand and the following five predictors are selected, i. e. x,, mean
circulation index; x,, area index of the subtropical high; x,, intensity index of the subtrop-
ical high; x,, center of the north polar vortex (the positive is taken for east longitude and
the negative for west); and x,, the point to which the subtropical high can extend westward:
with 2 =5 and n=22. Let the above mean of R,_, be of the first category and the other
be of the second.

First, calcniate the mean vector (1) and pu(2), their difference vectors g1 = pa(2) — u(1)
and the covariance matrices X{l1} and X{2), i. e.

a=(—0114 —3617 7367 15683 103.083)", (X(l) and XZ(2) rot shown).
Next, calculate transformation matrix A:

s 0.539 0.208 —0.066 0.084 0.025
| —1.238 -0.047 0.024 —0.074 0.010
A_| 2202 04y 0136 00056 —0.001
Fo4.204 -0.254 0.108 0.004 0.001
, —0.804 —0.23] 0.144 —0.004 0.002 ~
Matrix A saiisfies the following relationships:
A Z(1DAT=I
- 10,574 \
i 2,182
A-D(2)A"= 0.740
0.260
0.160 J

and

(m)=A.u=(3.550 0.088 —1001 —0.203 -0.050)7.
Then, calculate (div),, i=1, 2, 3, 4, 5; and rearrange m,, 1, accordmg to the magnitude of
{div),. The results are listed in Table 1.

The values of m, and 1, in Table | are, in fact, the meari and variance of the composite
predictor y; in the second category, respectively. Since the orthogonal tramsformation of
(5) and the linear transformation of {7} and (8) cause the mean to be 0 and the variance
to be | for each of p, in the first category, the relative importance of each composite pre—
dictor can be easily analyzed by the same critefion. '

Inserting the values in Table 1 into Eq. (14), we obtain D(y,) with i=1, 2, 3, 4, 5,
i. e, the quadratic discriminant function that makes use of composite predictor y, saparafély.
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The composite quadratic discriminant function can also be obtained. Table 2 shows the
accuracy of these diseriminant functions for the samples.

Table 1. Values of m, and 4, in Order of (div},

Composite Predictors », m. 3 (div),
i 1 3.550 | 10.574 11.232
" : —~0.050 1 0.166 2,100
s ~1.001 ! 0.740 | 1.223
» I ~0.203 ‘ 0.260 i 1.156
7 0.088 2.182 | 0.326

Table 2. Accuracy of Discriminant Functions

Quadratic Discriminant Ordinal Mumber of
Accuracy Wrongly-Discriminated
Functions Samples
| Diy) 19/22 2,5,21
© \ D) 18722 7,9,4,6
R D(ro) 17722 2,9,17,21,22
n Diy) 13/22 7,8,9,10,12,4, 5,13, 11
By 14/22 2,8 1,56, 13, 21
o, DowED _ 2| 2, 5 2
"g | DD+ D 0/ 5, 21
§ D)+ DO+ DY+ D) 20,22 5, 21
DO+ DIy + D) + Dy ) +DUys) /22 5 21

* The optimum quadratic discriminant function.

Tables 1 and 2 show:
(1) The great differencs between the two catsgories in both the mean and the variance

of the composite predictor y, provides significant category information. The great differ—
ences between the two categories in the maca of the composite predictor y, and the small
difference in the variance can also give significant category information. In contrast to
V., ¥, shows the small difference in variance and the great differsnce in the mean.

(2) Ttis seen from the single discriminant function that the accuracy of D{y,)is pro-
gressively decreased from i==1 to 5. :

{3) The discrimination accuracy is 19/22 when the composite discriminant function
D(p)+D(y,) is used, and 20/22 when D(y)+D{p}=D(y)) used, Generally speaking,
from then on, the accuracy does not increase any more, €ven though more y, is added.
Thus, D(¥,)+D(,)+ D{y,) is considered to be the optimum quadratic discriminant func-
tion,
Comparison is made between this method and that of stepwise discrimination, Table
3 shows the result from the same data ia North China during June through August by step-

wise multiple discrimination.
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Table 3. Accuracy of Stepwise Multiple Discrimination

Positive Predictor Ordingl Number of
F Standard Accuracy
Introduced Wrongly-Discriminated Samples
30 | (+)xe ()% 16/22 ’ 1,25 17,2
1.0 (43, 17/22 2,352
0.0 {(+3x, (+Ix 18722 1,517, 24

It is seen that:

(1) When the standard of sigmificance tests ¥ is equal to 3.0, 1.0, 0.0, the accuracy
by stepwise discrimination is 16/22, 17/22, 18/22, respectively, worse than that of the opti-
mum guadratic discriminant and even worse than that of D(y,).

(2) Nos. 5 and 21 in the sample are classified into the wrongly—discriminated samples
either by this method or by that of stepwise discrimination. However, Nos. 1 and 17,
which are wrongly-discriminated by stepwise one, can be corrected by the quadartic dis-
criminant function. Thus, when a new sample is classified, the transformation discriminant
function is better than stepwise discrimination. |

We have used this method for predicting the rainfall in the middle and Jower Chang-
jiang River basin during June, The June mean monthly rainfall at the five stations of Shanghai
Nanjing, Wuhu, Jiujiang and Hankou is selected as a predictant and three predictors selected
from experience in forecasting and by statistical standard, i. e., x,, mean monthly meridio—
pal circulation index in September of the previous year in Asia; x,, mean monthly zonal
circulation index in January of the cutrent year in Eurasia; and x,, mean height minus 5,000
geopotential meters at the five stations along 85°N from 150°E to 170°W in October of
the previous year.

The data used in this study cover 29 years from 1952 through 1980, n=29, p=3.
The first category is defined as drought and the second as flood. The June rainfall data
are divided into two categories: drought (less than 180 mm) and flood (more than 180 mm).
Through calculation we obtain the transformation matrix

4.1673 0.5290 0.3178
A= 2.1476 9.6423 0.0765 .
- B.8326 2.5951 0.0807

Calculating (div),, (i =1;.2’ 3) from (17), we have i,=0.403, m,=1290; 3, =0470, m,=
0.726: and 1, =3.072, m,=0.644. From (13) and (14), we obtain the discriminant function
D{y)=0.743}—3.20y,+1.61,
D(y1)=0.563y§-—1.545y1+0.183, (18)
Dly,)=—0.3373v1—0.210y, +0,6287.
By subsfituting the data from 1952 through 1980 into {18}, the optimum composite dis-
criminant function is obtained. :
1f D)= D(y,) + ()= —0.3, drought (the first category) is expected in June and if
D(y)=D{(p,)+ D{y,)< —0.3, flocd (the second category) is expected in June, The accuracy
of the sample fitting is 27/29. Error arise only for 1970 and 1973, when no severe drought
.or flood occurred. The results have proved to be quite satisfactory.
For 1981, X=(0.64 0.76 20)7. Using linear transformation (7} Y=A(X—pu(1)), we

AT L T EATEESs 1 RIE ) T



132 ADVANCES IN ATMOSPHERIC SCIENCES Vol. 3

obtain Y={—0.49 1.520 1.658)7. Substituting these values into the discriminant function,
we have D(y}=0D{y,)— D(y,)=2.493, which is larger than —0.3. Thus, we forecast drought
in June and drought was indeed observed.
For 1982, X={(0.50 0.81 33.6)", Through calculation we obtain D(y)= —1.634, which
is smaller than —0.3. Thus, we forecast floed in June and flood was also observed.
For 1983, X=(0.48 0.71 23.6)7. Through calculation we obtain D (3= —1.7748, which
is smaller than —0.3. Thus, we forecast flood in June and flood was observed too.

V. SUMMARY AND DISCUSSION

(I} The advantage of using the quadratic discriminani function through orthogonal
transformation is that the method has simple function forms and can be used to optimize
the discriminant functions. The above examples show that it has better effects than the
linear and stepwise discriminations.

(2) By using the criterion of the Kullback divergence, the discriminant efficiency of the
predictor can be estimated in the case of nonlinearity. If there is only one predictor x,,
the vailuz of divergence becomes

. 1 N .
(dlv)xl=m{[0il(l)—U;L(2J]2—[Hﬁ(1)—H,l(z)]“[ail(l}+0;1(2)]},

(18}

which can be used in the single predictor analysis. On the supposition that ol {l}=0% (2)
in (19), the equation becomes the calculation formula of the Mahailalobis distance for the
single predictor. It should be pointed out that the conclusion characierizing the discrimi-
nant efficiency of the predictor may not agree with the case of nonlinearity. For example,
as p, (1} =pu, (2}, the Mahalanobis distance of the predictor is equal to zero, and in the
case of linearity, x, provides no information. However, when there is a marked difference

in the variance of the predictor x, for the second category (div), = % ,,;,fo'il(l)—

oL, (1}o%,8
0%,(2))% which is a large value, and x, is still considered to have the discriminant
efficiency in the case of nonlinearity. It is seen that when (x, —z,)* is large, the first category
is easily expected; when (x,—%,)* is small, the second category is easily expected. I the
critical value is properly selected, (x, —z,)* can bz used as the discriminant function.
Therefore, the criterion of the Kullback divergence has extended the Mahalanobis distance,
a new index, which can be used for measuring the discriminant efficiency.

(3) The prerequisite for the quadratic discrimination through orthogonal transforma—
tion is that the covariance matrix should be positively definite, that is | £{1)] =0.
This condition can generally be satisfied except that a predictor Is a linear combination of
some other predictors. In the latier case, | £{1}] =0. We have made experiments on
this case by putting in a predictor composed of the linear combination. In the process of cal-
culation an overflow occurs. By removing the overflowed predictor, the transformation
matrix can be easily determined. However, it should be noted that when a great number of
predictors are used and there are not many examples in the sample, X{1) may approximate
to 0, thus making calculation unstable. This situation, of course, does not happen when-
stepwise linear discrimination is used. When a large number of predictors have to be used
{p>>20), it is better to roughly select the prediciors by stepwise regression or stepwise dis—
crimination under very low standard F of significance tests so as to sift out some predictors.
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of the linear combination. In this way the above-mentioned situation can certainly be avoided
when this method is wused.

(4) The critical value of the discriminant function is theoretically 0 (see Egs. 2 and 4).
However, as P(X/w,), P (X/w,) may randomly deviate from normal distribution, we may
select a value approaching to 0 as the critical value on the principle of the fewest erroneous
examples. )

(5) This method can be extended to the discriminant analysis of the G (G>2) category.
For example, in order to discriminate G=3, the discriminant function should be

D) =In SRS, i, ] €G. (20).

By the analogous (ransformation
X—u(); AZMHOA™=L AZR(HAT=A;
where A is a diagonal matrix, whose diagonal elements are given by the roots of the fol-
lowing equation
[E(G)—-AZ@] =0, (21)-

the discriminant functicn has the form
z 1wmi,y . 1, -
Do (Y= 3 D(y) Z?Z'\ Inks—ys+ (A +mh—2muy) s (22)
b= =1 -

and D ;()=—D;(y.. When D,,=20, and D=0, X is expected in the first category;
when £, =0 and D.,20, X is expected in the second category; and when D, =0 and
D.. =0, X is expected in the third category.

Sincere thanks are due to Mr. Liu Guifu for his kind help in writing this article and also for his
demonstration of soime  formulas.
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