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ABSTRACT

In part I of this paper, we have discussed two problems: the general properties of two-dimensional baro—
tropic motion and the evolution and structure of both Rossby wave packet and inertio—gravity wave packet.
In this part, we shall continue our discussion, Third, normal modes and continuous spectra of both quasi-
geostrophic and non-geostrophic models, their different behaviour, and the comparison of normal mode approach
to the wave packet approach, Fourth, weakly nonlinear theory of interaction based on the analysis of eddy
transports. A nonzonal basic flow as well as non-geostrophic model is also included in the consideration.
The last, the fully nonlinear theory, making emphasis on the conditions for the maintenance of nonzonat
disturbances and the conditions for their continuous and complets absorption by the zonal flow. A comparison
of Rossby wave absorption to energy cascade in the two-dimensional turbulence is also given.

IV. NORMAL MODE APPROACH

1. Normal Modes and Continuous Spectrum In the Quasi-Geostrophic Model

As mentioned above, the representation of disturbances in the form of wave packet and
the correspondent WKB method have the advantages of simple and clear geometric picture
and excellent mathematic formulas; but the disadvantage is that they can be applied only
to those disturbancse whose temporal and spatial scales are small compared with the basic
flow. It is better to apply the normal mode method to the general initial value problem.

The normal mode method has been successfully developed in the study on the problems
of hydrodynamic instability (see, Lin™, 1955, for example), and applied to the investigation
of barotropic instability in a rotating atmosphere first by Kuo®™ (1949). However, in an
inviscid fluid normal modes do not construct a complete system and there must exist con-

tinvous spectrum.

Let
/{1, 8,8 )= (0e™a=, (79)
substituting (79) into (16), we have
T d . d¥ : f‘ m 2
(A_C){dy (=5 dy \:a(l y) +K } a ay‘f’"“’ (80)

where p=acosf and the basic flow is assumed to be zonal and steady with a continuous
27/2y; c is called as an eigenvalue or discrete spectrum if the correspondent  solution
to (80), ¥, and its derivative of second order are finite and continuous everywhere in
~1<y<<+1, and such ¥ is called as an eigenfunction or & {discrete) mode, Usually, p”
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determined by (79) from an eigenvalve ¢ and eigenfunction ¥ is also called as a normal mode.
It is clear that a normal mode is a special solution to (1). Each eigenvalue ¢ must be either
a complex number {(unstable case) or a real number located in c<i.u or c>,’l.“, where
m\ﬂ( P)= ﬁ._“ More strict bounds of discrete spectra are given by the so-called
semicircle theorem (see, Howard™), 1961; Pedlosky!), 1964; Kuo'), 1573 and Wangl),
1983).
_ Every constant ¢ satisfying I.,n\c<i.., makes (80) have a singular point y,, where
A(y.)=c¢, hence, the correspondent ¥ has logarithmic singularity at y, and is not an
ordinary solution to (2). The region j..,,.__c<.1_,, constructs the continuous spectrum.
Denote the discrete spectra and modes as C,, and ¥, (¥) respectively for a given
m, n=1,2,...; and the continuous modes as ¥, (p, c). Every ordinary solution of (1) can
be represented as follows

P'(4yy,8)=Re {Z [ZA,,W_.(y)e-'mr“m'!+j§" A,,.(c)w,,,(y,c)e-m-murc]}

=Re {Z [wmi(ﬂ’.’)',f)"'?’uc(lsy!f)l }’ (31

where 4,., and A, {c) are the coefficients of expansion, (Zeng et all’., 1981, Lu et al'®,
1983).

2. The Behaviour of Quasi-Geosirophic Disturbances

Let
W (=N HPLy)=|Fau(y)|em, (82)
(PLH »)5£0),

we have that W1 is a const. (no phase shear) for the real C,,, while d¥Y) (¥)/dyis0
for a complex ¢ with nenzero imaginary part (Wang!®, 1983). These are just regquired by
the fact that a single neutral mode {C,, . is real) does not interact with the basic flow, but
an unstable mode, either developing or decaying, must have energy exchange with basic flow,
hence v and d¥Y)/dy are not identically equal to zero.

Of course, every decaying normal mode or their linear combination in the unstable case
will finally be absorbed completely by the basic zonal flow. Besides, unlike a single neu~
tral mode, a combination of several neutral normal medes usually interacts with the zonal
fiow due to their non-orthogonality even if the zonal flow satisfies the sufficient condition for
stability. However, this inferaction is transient, and the disturbance always remains.

On the contrary to the discrete modes in the stable case, the continuous spectrum, i.e.
W, always interacts with the basic zonal flow. Zeng et alt™l. (1983) have proved that
both ¢Z, and |d¢/./dy| approach zero as t—»oco. This means that there is a complete
absorption of a disturbance consisting only of continuous spectrum and its enesgy no mat-
ter whether the disturbance grows or decays in the initial stage. However, its enstrophy
must remain in the stable case due to the conservation law (18), hence, as f— oo the limit is
an ideal function.

From the above analyses we conclude that, after a long time, a disturbance leaves the
part consisting of a combination of neutral modes and unstable growing modes, if any, then
that part consisting of continuous spectrum or a combination of unstable decaying modes
becomes very weak. In the stable case the necessary as well as sufficient condition for com-
plete absorption of a disturbance is that the disturbance consists only of continuous spectrum;
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while in the unstable case growing modes do not exist with the disturbance.

Numerical calculation by using finite difference method but with a beta-plane approxi-
mation {Lu et al®*), 1983) shows that there are only a few discrete spectra in the siable case,
and the modes have rather large meridional scale. Tt also shows that a continuous spectrum
does exist (in the region Am\c<,1 the eigenvalues of the matrix approximating the
original differential operator are denser and denser as the grid size becomes smaller and smal-
ler), and the function ¥, (r, ¢) usually has small scale, like a local disturbance (Fig. 7).
This means that by representing a local disturbance or a wave packet in terms of (81), the
main component just corresponds to the continuous spectrum. - ‘
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Fig. 7. Examples of speciral functions ¥ ., (¥, ) F’ig.-s. The evolution of a disturbance at x=0.
correspanding to the continuous spectrum The disturbance consists of continuous
but computed by using finite difference spectrum {somc examples are given in
method, ¥, (», ¢s) is simply denoted as Fig. 7), and its trough-ridge lines ini-
Y400 5 2o +mp, 0<p<1 on a g-plane, © o tially are diregted along the meridian.

%, @; and @, are all const., and m=1.

Tt is very inferesting that a disturbance consisting of linear combination of such modified
W.(y, ¢} and having no initial meridional shear of the trough-ridge lines does continuously
decay for a long time, and its meridional wavelength becomes smaller and smaller (Fig. 8).
This is a good demonstration of the behaviour of a wave packet and a confirmation of the
conclusions obfained by the WKB method. Tn fact, by dividing A L Aoy into sev~
eral subsets with distance dc, small enough, ¢/, in {81} can be represemed in a form of
linear combination of wave patkets, . .

Plralhs 328) = 2 Yaaaldy ¥s8)y

Cpthdcgi?
w;ck(iry!f)zj (c)lp (y'c')e‘lﬂti.—':!ld'c
(0 A Pulyso) |eitemeremonsessidel

cgddegfz
EC —61‘
W gil® m(y-@p-\-m—mcﬁn

-'—:A*(A,y,f}ei[a“f’-ckl+ﬂh’£ﬁﬂ , i e (83)
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Every one has a critical line at y=y,, where ?t(y,.):C,,, but the scale of amplitude, 4, is
not necessarily larger than that of .y, ¢;). Of course, the result obtained by normal
mode approach is more strict, .

Yamagatal (1976) has found an analytic solution to the lincarized vorticity equation
in an infinite §— plane with a constant shear of # or 5, and has also shown the complete
absorption of disturbances. Retently, TungU®} {1983) has made a more strict analysis, and
has shown the asymptotic behaviour of this absorption in detail.

3. Non-Geostrophic Maodel

Using the finite difference method and beta-plane approximation Li and Zengt™
(1983) have recently carried out a numerical analysis of the modes and continuous spectrum
in a barotropic atmosphere with 2 steady zonal flow as the basic flow.

There are three branches of spectra corresponding to the Rossby or vortical wave,
downstreamn propagating and upstream propagating inertio-gravity waves respectively.
The Rossby or vortical wave branch essentially does not differ from that obtained by the
quasi-geostrophic model. Namely, there are discrete spectra and <ontinuous spectrum.
The number of discrete spectia is finite in the stable case, but, probably, infinite in the un—
stable case, although the imaginary part of the spectra is very small except a few of them
{Fig. 9a). However, two inertic—gravity waves branches both have only discrete spectra
(Fig. 9b) again., This fact indicates that the inertio-gravity waves can not be completely
absorbed by a steady zonal flow in an inviscid baroiropic atmosphere unless the waves prop—
agate in an infinite plane.
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Fig. 9. (a) Discrete spectra with complex ¢ for an vmstable zonal flow
g—Bygtr.s-r 000 in a primitive equation model, f=1, m=2 and
0Ly<1, and o=me=o,tioy.

{b) Three branches of spectra for a stable zonal flow 8=1-4-0.8y, f=1,
m—=2 and O<{y<1. One branch located in ~1<{o<3.6 corresponds to the -
vortical waves. There is only one discrete mode in this branch, and
the region 2<0<3.6 corresponds to the continuous spectrum dege- -
nerated as very demse “discrete™ spectra by using the finite differ-
ence method.  The two branches lecated in o<C—2 and ¢>>4 correspond
to upstream and downstream propagating inettio-gravity waves
respectively.
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V. THE INFLUENCE OF DISTURBANCES ON THE BASIC FLOW——WEAKLY NONLINEAR
THEORY

1. Interaction of Rossby Wave with the Zonal Flow

There is not only energy transformation between the disturbances and zonal flow but
also redistribution of the zonal momentum as the evolution of disturbances goes on.

The redistribution of zonal flow can be directly determined by equation (17) as the
meridional flux of potential vorticity v]q sind caused by the disturbances is known.
However, in order to facilitate the physical interpretation it is more convenient to take the
(dimensional) angular momentum equation

day, sinf 2 — -
“at = asmgae(v;u;usm’ﬂ)—moosﬁ-u,asmﬂ, (84)

where the first term on the right-hand side is the convergency of the meridional flux of an-
gular momentum, vip,asin’g, and the second term, —2geosf - #,05ind, is the effect of
wave-induced mean meridional velocity. By use of the quasi-geosirophic approximation,
i. e. 2wcosd in (84) is replaced by f,=2wcosd, and the continuity equation is approxi-
mated by

¢ | - dpesind
HhE +e ;%:ﬁgg 0 (85)
the wave-induced mean metidional velocity is determined by the following equation
. .8 /BugEnd i} _ — .,
smﬂﬁg( :i;ﬂaﬂ) Kf; resind= K‘f"f‘,'-slnﬂaﬂ(vﬂv,,asm 8. (88)

It is clear that 7, =0, and the evolution of zonal fiow is simply determined by the convergency
of angular momentum flux if X=0, i. ¢., in a non—divergent barotropic atmosphere. How-
ever, as the effect of two-dimensional divergency of the flow is taken into account there is
always a wave-induced 7, and a more detailed analysis of the waves’ interaction is need-
ed, although the unique factor of influence is the angular momentum flux, v{v; a sin*g
which also governs the field 7, in accordance with (86).

By using the observed wind data or observed geostrophic wind fields the statistics of
angular momentum flux have been carried out by many investigators in the general circula—
tion of the atmosphere. On the other hand, the transport properties of normal modes have
been thoroughly analyzed by KuoU'! (1951). MNamely, a neutral mode does not generate
nonzero flux of angular momentum due to no phase shear of the trough-ridge lines (see,
(82)), but an unstable mode, either growing or decaying, does. It is not difficult to think
that a single unstable mode has its definite profile of u_;v—; a sin*@, hence the zonal flow is
accelerated in a certain definite latitudinal zone and decelerated in another definite zome,
although the total zonal energy decreases in the case of growing mode and increases in the
case of decaying mode. In fact, there is a very simple relationship between the fluxes of
angular momentum and potential vorticity,

_ a
vig a' sin'd=—za(viv; a sin?*d), (873
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hence, we have

a‘sin*g A 7
ﬂae(v v, e sin*d) =——5 37,0 at(*ﬂz—) {88)

and
8 2
t(masme)+“3“‘;ga at( ) —20rcosB - Feasing. (89)

Integrating (88) over the whole region with the boundary conditions ] sind =0, at
8=0, x yields (18), so that the conservation of total weighted enstropy g” sin8/2(27/698)
is required by the vanishing of angular momentum flux at the two poles or two boundaries.
According to (39), in a nondivergent atmosphere the zonal flow is accelerated wherever
(@™ /31)/(27/26)<0, but decelerated wherever (2g™ /8t)/(27/0)>0, so that the zonal
flow is accelerated in the region of 97/80>>0 and decelerated in the region of 25/88<0
if a decaying normal mode is superimposed on it, and the opposite is true if 3 growing
mode is superimposed. When the effect of divergency is taken into account one can ob-
tain a tendency of the zonal flow by solving (17) i. e.

851 _{"3G(0,87) 2 2viv;asin®® \ . gy
Bt _]n L [asmﬂaﬂ( asianﬂ'aﬂ' )Ja]nﬂdﬂ . (50)
where
. | 2n4-1 P
G(9,0) = 5 l‘ ‘mﬂWP..(COSB)Pn(OOSQ)
__ln( 16 3 ’)+regular terms. (81)

Substituting (88) into (90), a qualitative analysis can still be made, but it is rather compli-
cated. If there is a neutral mode, v;v} is zero everywhere in accordance with (88) because

3?/&50 for a single neutral mode, hence 5,=0 and 9y, /2:=0 everywhere no matier
whether X=0 or 1. A more strict analysis of the mean zona! acceleration can be found in
Andrews and Mclntyre’s papert'® (1976) and Pedlosky’st¢ book (1979), although for ba-
roclinic atmosphere.

However, due to the non-orthogonality of the modes a linear combination of normal
modes or a disturbance consisting of continuous spectrum greatly differs from a single
mode, they always cause some transpost of angular momentum and interact with the zonal
flow (Zengl*™, 1982). When the disturbance is represented by a single wave packet, we
have

viviesin'f=U*L*"a az g!; (82
BT R s Ny
ox a3y ZAXJ mnl WX +0(e) =~ W[ +0(e), (93)

in accordance with the results obtained in §II-1, where AX=2xea and ¢ (x,)) are non-
dimensional. (92) and (93) indicate that a wave packet always causes divergency—Convergency
of angular momentum flux due to the variation of its amplitude |¥,]|, and even the variation
of its orientation mm. Supposing thers is a single jet in the westerlies with the maximum
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of A (i. e. @, defined in §.11-1 at ¥, (6,)), 94/06<0 as 90, (i. e. 28/BY >0 as ¥<
Y,), and 21/80>0 as 9<8, (i. e. 97/8¥ <0 as ¥>V,); and there is a typical decaying
wave packet with ma>>0 at Y>¥, and mn<0 at Y<Y,; mn|&,|® reaches its extreme
value at Y,, ¥,, where ¥,>>¥; @ mn|W,|?/8Y =max. at Y, and zero at ¥|, ¥;, where
Y,<¥j<¥j and ¥;<¥, Y,;>Y,; and (sin0)—@ mn|W,[*/0Y =max. at ¥{, zero at
Y#, Y. We have the convergency of angular momentum flux in Fij<¥Y<¥;: and con-
vergency of potential vorticity flux in ¥# <Y< ¥7, but its divergency in ¥? <Y< ¥/. For
simplicity, assume that ¥; and ¥? are closed to ¥, (this is the case if the wave packett is
symmetric about the jet), then we have the acceleration of westerlies on both sides of the
jet in accordance with (30) and (91) except those latitudinal zones far away from the jet. Diff-
erentiating (90) with respect to ¢, we come to the conclusion that the absolute shear of the
zonal flow is also enlarged.

Performing the similar analysis we come to the following conclusion: a growing wave
packet with its centre located near the jet in the westerlies decclerates the zonal west flow
as well as weakens the absolute shear of zonal flow on both sides of the jet (Fig. 10).
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Fig. 10, The evolution of zonal flow due to the
interaction with a Rossby wave disturbance
located symmetrically about the jet. Solid
fine is the initial profile of &, the dashed is
the redistributed. (a) with a decaying dis-
turbance; (b) with a growing one.

2. Nonzonal Basic Flow

Taking the quasi-geostrophic model (16) and a basic flow consisting of ultra—long waves,
we have

8 _ a
(E”ﬂasmm

2
+Eam)§'—"-—v'$+s, (54)
where the bar denotes some spatially and temporally averaging operator rather than a zonal
mean, § is the source (because in the real atmosphere the basic flow is always forced), and
g denotes the flux of potential vorticity generated by the perturbations,
F =0"v)gdsnf +A'viq. (95)
If we again adopt a linearized model to describe the evolution of the perturbation,
8 o _ @ | , 08
(5 +7vaemen +“‘a—aa)‘1+”*mqeaa +vigag =0 (96)
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(40) is the dimensionless form of (96), then (96) and (94) together construct a weakly interact—
ing system.

Taking a time-filter with an appropriate lime-scale, some investigators have performed
systematical calculations of % by the observed atmospheric data. The results show that
the divergency|v -5 | is large indeed. This means that the spatially and temporally averaged
flow is forced not only by the source but also by the influence of perturbations. At present
much effort of investigators is devoted to the evolutionary process of the basic flow owing to
its practical importance in the middle-long range predictions of weather and climate, How-
ever, for a better understanding it is very important to study the interaction mechanism.

Some questions arise. First, Eq. (94) is obtained by taking an averaging operator (filter)

on (Ij and neglecting the terms such as 5,89 /68 and v}dgz/add, i. e.
E_’?mo, (97

where F and g denote two functions, Eq. (97) takes place only if the scale of the filier {the
“bar*"} is much larger than that of perturbation (the “prime’”). This is 2 practical constraint
for the filter. Second, the behaviour of ultra-long waves is not well described by (16) or
(94) and, instead of (94), a more accurate equation is needed although it is not difficolt to be
found. Third, the averaged forcing 8 is not very well known, althongh we have a good
observational data set of , so that for making a prediction it is better to divide & into
two parts, &, (transient) and &, {quasi-stationary), by adopting a new filter (dencted by symbol
“~'7) with a long enough period,

=), F=F-¥. (98)
&, is known from the observations although &, is not known very well. Now, the equation
for predicting &, can be written as follows

a P _ gL - @ -8\
(3 +n asinor 50 ag) 3 (v zaimpan + 9o 330 )
=V (F ~F)+8,~Z,, (%9)
where
- 1fd PR AR ST P
.gﬁrE“‘-Egi-n_ﬂ‘{ﬁEUuEr—v.u&t]+a_ﬂtsme(v”q’_u”§')]}' (100)

&, might probably be omitted and subscript s denotes the quasi-stationary state. In (39)
we have simply take (94) as the governing equation as an example. Fourth, when the perturba-
tion 4" is very strong one should even iake a nonlinear equation instead of {96}, i. e. add-
ing the nonlinear terms similar to (100). By doing so, it seems that the calculation is not
simple and even more complicated than directly integrating (16), but we benefit by the se-
paration of the scale (especially the time—scale) and fhe elimination of some unknown fac-
tors.

3. Non-Geostrophic Model

In the range of weakly menlinear theory the perturbation equations are written as (69)
and the dimensional equations for the evelution of basic flow should be taken as follows

(see, Zengl®, 1979)
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(aaf +a % +5%)a;f5+ %=—$ [% ($ 17?.—"5—“)4-%@7)]-@:.
R R e e (T SIS
R (101)

where a local standard coordinate system has been used for simplicity, otherwise the terms
0% v ctgd+A(—a)"' viu] ctgf and 02075 ,0] ctef + AP (—@) ' (Fav) +uiB,)
x ctgf would have to be added to the left sides of the equations of motion for the basic
flow and the perturbation respectively.

The unusual terms (§)~'(—¥ -?/z) arise due to the fact that there is a transport
of available potential energy, while the terms & ¢'w’/dx+5 ¢'v’/8y disappear because
the zero or small mass transport either by the vortical wave or inertio—gravity waves.

This weakly interaclive system possesses the conservation of total energy

a . ’
5 (E+ED=0, (102)
where
_ 1 _ _
E=<\| (@ +0*+¢)ds,
{ 2”5 (103)
E'= ;:HS [Hu™+u™)+¢" s,
if F,=F,=0.

Suppose that there is a zonal basic flow with a jet, and that thers is a downstream
propagating inertio—gravity wave propagating toward the jet from the source located on one
side of the jet. According to the results cbtained in § III-4, this wave decays before it reach-
es the jet axis, and the zonal flow is fed by the wave energy. After the wave propagates
into the other side of the jet axis, the wave becomes a growing one, hence it draws the zonal
energy and decelerates the zonal flow. Therefore, the jet axis will continuously move to the
source region if the source acts continuously. This is one possible mechanism of interaction
of the inertio-gravity wave on the synoptic or planetary scale atmospheric motions, although
it is difficult to be separated from the very strong interaction of Rossby waves in the baro-
tropic components of the real atmosphere.

It might be important to study the interaction between the basic flow and the tide or
the synoptic system and the mesoscale or small scale inertio-gravity waves. In the former
the wave is generated continuously, and in the latter the wave has a rather large amplitude.

These problems need more investigations.

V1. NONLINEAR CONSIDERATIONS

1. Special Solutions Consisting of Nonzonal Disturbances

So far most the results obtained are based on the linear theory or the theory of weakly
nonlinear interaction. They should be corrected by considerations of nonlinearity.

As the nonlinearity is taken into account only some classes of the neutral modes obtained
by the linearized quasi-geostrophic model are solutions to  the nonlinear quasi-geostrophic
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equation and are the propagating waves without change in their shapes. Usually, such solu-
tions are also simply called as Rossby wave (in a g-Plane) or Rossby—Haurwitz wave (in a
spherical atmosphere). As well known, they have been found as

$(8,hst) = — Asa? sin 8+ A, Pu(cos ) + Z'}A.P:(cme)cos (mA—met), (104)

in the spherical atmosphere, where }i’,,, Ay A, (m=12,... 1) are all arbitrary const,, and the
phase velocity ¢ is given by

_ An(n+1)—21-20 -
TRt DY K i /d (105)

However, according to Hoskinst'? (1970), these waves are unstable with respect to the small
perturbation either when m is large enough or one of the amplitudes A, is large enough.

Taking a Rossby wave or Rossby-Haurwitz wave as a zero-order approximation, and
expanding the solution into series in power of Rossby Number, Zeng'? (1979) suggested
a method to find slowly propagating non-interactive waves. This has been extended and tested
in numerical experiments by Zhang and Zengl'*'? (1983) and Zhangt'*d (1983). Another
class of solutions but for an infinite plane has been found by Lius™¥ {1983).

The above~-mentioned non-interactive waves are useful in the numerical weather predic—
tion for testing the numerical schemes and the schemes of initialization. However, they
are not very much interesting in the dynamic studies.

Other class of sperial solution to the barotropic quasi-geostrophic model has been
found by Lorenzi**} {1960), Longuet-Higgins and Gilli*" (1967), Wul?1 (1979), Lit** (1982)
and mmany others, This class of solutions consists of triad resonantly interactive waves,
demonstrating the Fjgrtoft’s type of energy cascade. Let the triad consists of W;(8,4,¢)=

@;(0,4,8) +PF(,4,t), where d§f=A,(t)P:;' (cos @) exp{mjd—ot}i, @} is the complex

conjugate of &, o;=m;c; and ¢; is given by (105) but with 7,,,:0, j=12,3, the conditicns
for constructing a closed resonant triad are as follows

3

>, mi(—1)4=0,
= (106)
Z oi{—1)i=0.

=T

Otherwise, the set might be a non-interactive one or a unclosed one which interacts with whole
spectrum.  1f one of the components in the triad is the zonal flow, it will undergo a periodic
vacillation and result in an index cycle.

2. The Conditions for the Muaintenance of Nonzonal Disturbances

The above special sclutions are some too particular cases, In general it is desirable to
seek the conditions for the maintenance of nonzonal disturbances. As predicted by the
linear theory, the necessary condition for the maintenance of nonzonal disturbances is either
that the zonal flow is unstable with ({,—A)/B,<0 in some area, or that the nonzonal
disturbance has no critical line or consists of some of discrete modes. These conditions
should be corrected by the nonlinearity on the one hand and, on the other hand, in the cases
of critical Yine or continuous spectrum the nonlinear results will much differ from these ob-
tained by the linear theory. According to the linear theory, the conditions for complete
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absotption of disturbances do not depend on the intensity, but they do in accordance with
nonlinear consideration., In fact, we have the conservation of potential vorticity and the
conservation of the inertial axis of the atmospheric motion it the nonlinear theory (see, §
I[-3). Therefore we come to the conclusion:

Nonzonal disturbances will maintain and will not be completely absorbed by a jet-like
zonal flow in a barotropic atmosphere without forcing and dissipation, if one of the following
conditions is satisfied: (1) there are three or more centres of potential vorticity at the whole
sphere, and (2) the atmospheric inertial axis does not coincide with the axis of the earth ro—
tation.

The zonal flow has two potential vorticity centres, each at one pole in the two hemispheres.
Note that an individval vortex (cyclone or anticyclone) intensive enough is usually associ-
ated with a centre of potential vorticity, hence there is an additional centre at the sphere along
with the above~mentioned main two, and this nonzonal disturbance can maintain to some
extent. The part of energy maintained with the disturbance also depends on how large its

ian”

Fig. 11. Numerical experiment with hemispheric primitive equations of barotropic
atmosphere. The dashed lines are the isopleths of initial geopotential, consisting
of 4 strong vortical centres superimposed on a zonal flow with 4 Rossby waves,
The sclid lines arc the isopleths on the 10th day.
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Fig. 12. As in Fig. 11, except that the initial field consists of one additional
vorlical centre superimposed on almost the same zonal fiow and
the Rossby waves. (a) initial, (b} on the 4th day, {¢) on the 8th day,
and (d) on the 13th day.

meridional scale is and how weak the zonal shear of the flow is.

Second, the atmospheric inertial axis does not coincide with the axis of the earth's rota-
tion if there is a strongly asymmetric flow pattern, for example, an intensive ultra~long wave
with longitudinal wavenumber 1.

It is also interesting to point out that there are always several potential vorticity centres if
the zonal flow is unstable and the disturbances are located in the area with B, <0. Basides,
a strong flow across the equator also creates more potential vorticity centres in the equatorial
region. These are all the favorable conditions for the maintenance of nonzonal distur-
bances.

Along with the above-mentioned conditions, the orographic and thermal forcing as well
as the baroclinity of the atmosphere, of course, are the other factors for the generation and
maintenance of disturbances. '
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Some numerical experiments with hemispheric barotropic model have been carried out
by Zeng et al.lt9 (1980) and Yuan et al.l*8 (1982). An initial zonal flow like the climatolog—
ical one at 500 hPa in the Northern Hemisphere is taken. When the disturbances with ad-
ditional potential vorticity centres are superimposed, the non—disturbances are all maintained
indeed in the calculations. Fig. il shows the maintenance of four intensive vortices super-
imposed on four planetary waves with a jet-like zonal flow. Fig. 12 shows the influence of
an intensive vortex resulting in a very typical downstream effect and alternatively deepenning
of the downstream troughs.

3. The Rotational Adaptation

On the contrary, the nonzonal disturbances might be completely absorbed by the zonal
flow (rotational adaptation) under some conditions. As predicted by the linear theory the
necessary and sufficient condition for rotational adaptation is that the nonzonal disturbance
consists of continuous spectrum. However, taking account of the nonlinearity, we can
indicate the only necessary conditions, i. ., there are two and only two centres of potential
vorticity on the whole sphere, and the inertial axis of the atmospheric motion coincides with
the axis of earth rotation (Zengt**l, 1979).

The absorption of nonzonal energy depends on the shear of the zonal jet as well as the
scale of the disturbance. In fact, according to (58) we have

oE' 2 mn\ 28 /1 mn 7 \*

rar=w )i, 5F) (g e ) axav =2 (aimayr a7) s 00D
where the asterisk denotes the average over the whole wave packet with emergy density
v?|¥,|?/2 as a weight. When the shear |2%/8Y | of the zonal flow is large but the scale
of the disturbance is small (either 1 or » is large), the absorption is rapid.

Zeng et al.l*} (1980) have carried out some hemispheric numerical experiments with an
initial zonal fiow similar to the climatological one on 500 hPa and disturbances satisfying
the above necessary conditions. The disturbances do gradually be absorbed by the zonal
flow. Fig. 13 is an example in which the initial field is the modificaton of that in Fig. 11 by
removing the additional centres of potential vorticity. Changing m from 2 to 8 (but fixing
the meridional structure of the disturbances), the time interval required for absorption of
half initial nonzonal energy varies from 17 to 4 days. Zeng and Held (1981, unpublished)

Fig. 13. As in Fig. 11, except that 4 initial voriical centres are
removed. The solid lines are the isopleths on the 8th day.

A
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Fig. 14. As in Fig, 13, except that the initial zonal flow is rather strong
and given by #,=qoe [0.02sind + 0.1 sin%0 xsin’28], and the
disturbance consists of 6 Rossby waves, ¥/ = Asin(acosd) Xsin6a.
The successive patterns are displayed on a Mercator's projec—
tion, Only the Northern Hemisphers is shown.

have performed another numerical experiments with an initial zonal flow similar to the mean
zonal flow on 200 hPa. Owing to a larger shear of the zonal flow, the absorption is very
rapid, and a half of initial disturbance with m=#6 is absorbed within only 2 days. Fig. 14
shows the evolution of geopotential field for the first 4 days.

The question whether a disturbance can be completely absorbed still remains unsolved
in the nonlinear theory., However, the linear theory applied to the weak disturbance as well
as the results obtained by numerical experiments shows that the absorption of disturbances
superimposed on a jet-like zonal flow and satisfying the above necessary conditions are prac-
tically complete.

It should be pointed out that whenever there is a large initial shear of the zonal flow and
the disturbances are represented in a form of wave packet, a considerable amount of
disturbances is always absorbed even if the disturbances are intensive enough to violate the
above-mentioned necessary conditions, but some portion of energy remains with the
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disturbances,

4. A Comparison of Rossby Wave Absorption with Energy Cascade in the Two-Dimensional
Turbulence

Based on the analysis of two—dimensional incompressible turbulence equation in a 8-plane
] 7]
= TEHT (hyAp) +BSE=vAty 4 F, (108)

we have realized that if the forcing F is given at a fixed wavenumber, the energy flux will be
directed from this wavenumber to smaller wavenumber but the enstrophy flux will be to the
higher wavenumbers in accordance with Fjgrtoft’st*® (1953) and Kraichnan’si**l (1967)
nonlinear theory, and then the energy goes into the zonal fiow due to the separation of cy-
clones from anticyclone by the g-effect in accordance with Kuos theoryl:*1 (1951).

Rhinest*? (1975) has indicated that if the turbulence is purely generated by a random
isotropic forcing with characteristic scale L* and velocity ¥* such that L*«/*, where [*=
(r*/8)'¥* the (nonlinear) two—dimensional turbulence energy cascade is dominant, and after
the energy goes into the waves with zonal scale /*, or if L*:3»!*, or the forcing with L¥<*
is located periodically in a distance larger than [*, the Rossby waves are dominant due to the
smallness of the nonlinear terms J {y, Ag) as compared with the g—effect, A9y /32 and the
energy cascade is slowed down (see also Williamsi*™, 1978). Rhines’ theoretic considerations
were tested by his and Williams’ numerical experiments, in which L*<«/* and a torbulent
flow with scales smaller than /* is generated in the beginning. This flow gradually has larger
and larger zonal component, and finally a zonal flow alternative with a characteristic meri-
dional width 7* is statistically established, The energy feedback seems to go to the zonal
flow directly, and Rossby waves seem not to occur.

It must be pointed out that in Rhines’ and Williams® experiments there is no zonal flow
initially, and their theoretical analysis did not pay attention ta the influence of zonal flow.
The establishment of zonal flow is so slow that it takes about 70 days even for the Jovian
atmosphere. Second, the dissipation term pA®yp is needed for balancing the forcing F as
well as for smoothing out the small-scale structures of the flow, otherwise the small scale
vorticity centres might always be pronounced.

Now, a question arises: what happens after the zonal flow is established or the influence
of the zonal flow becomes larger? To investigate this problem itis better to use the following
equations

B 189D - TR =o'y +F, (109)

a8, ., _ 8 P
37A¢+2¢-3?A1(J+ﬁy

- . _
5 AP+ T, Ap") =vA'G + F, (110)
where the symbols bar and prime denote the zonal part and the departure respectively. Eq.

(109} is essentially the same as (40) but with adding the nonlinear terms J(¢”, A¢ ) —J(p", Ay"),

which can usually be neglected. Now, we have Rossby wave, and the advective term @ a?f

caused by the zonal flow is as large as the S-eflect term, B,2¢"/dx. Therefore, the be-
haviour of Rossby waves is controlled by (8/8f+98/8x) Ay’ + B8y’ /8x rather than the
pure f-effect, and there occurs strong interaction between the zonal flow and the Rossby
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waves. Trough-ridge Lines are always overturned by the meridional shear of zonal flow,
and the separation of cyclones from anticyclones is also enhanced by the enlarged g-effect
for a jet-like zonal flow since # is replaced by By. According to our resuits, the energy
cascade does not slow down. In fact, our numerical experiments described in § V-3 show
that even in the earth’s atmosphere the characteristic time for the absorption of Rossby
waves is at least one order of magnitude shorter than that for generation of zonal flow by
the pure small scale turbulences. Besides, the short-wave absorption is even more rapid in
accordance with {107) if the eddies are not too intensive.

As suggested by Zepg et al.t*4 (1980), Yuan et al ©® (1982) have carried out further
numerical experiments, changing parameters such as the angular velocity @ of the planet,
the thickness H of the atmosphere and so on. Analysing all the numerical results by using
the nondimensional parameters: a=(T*f*)~',u=L,/L*¥ M7 = ./ gH [U* and &=
L#/a, and plotting them in & ln ¢™'-y diagram, we have Fig. 15, where 7% is the
time for E'(T*)=E’(0)/2, f* is the Coriolis parameter at middle latitudes, L* and U* are
the characteristic length and velocity of disturbances respectively, L, is the deformation ra—
dius of the atmosphere under consideration, and & and g are the radius and gravity of the
planet respectively. In all these numerical experiments, the meridional structure of initial
flow patterns are rather similar, and M' (or R,=M,z) and 3 do not change very much,
so that g is nearly a function of y. Comparing this diagram with Williams’ numerical
experiments, we may have some ideas about the efficiency of Rossby wave abserption and
energy cascade by pure two-dimensional turbulence.

<1

lnf“l'

” 0.5 T Lyl

Fig. 15. A diagram showing the dependence of nondimensional
characteristic time scale f** on the nondimensional
characteristic length L*/L of the disturbances, where
f* is the Coriolis parameter, and L, is the Rossby
deformation radius. The dark dots are referred to R,
=0.13 under the conditions of earth’s atmosphere, and
crosses 1—3 respectively to B;=0.115, 0,14 and 0.23.

In the Jupiter the » and g are larger than in the earth, and the Jovian atmosphere is
much deeper than the earth’s atmosphere. For the same 4§, i. e, the same zonal wave
number, x~' is much less, hence the characteristic time 7% is much less than that for our
atmosphere. For example, T* becomes less than 12 hours for the disturbances with 8 planetary
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waves (m==38). Note that in the Jovian atmosphere there are many jets, whose shear,
|aw/8Y |, and meridional wave number are both much larger than those of our atmosphere.
These factors make T* even greatly shorter than 12 hours, Therefore, pianetary waves, if
any, should be soon absorbed by the zonal circulation. This may explain why the zonal
structure is dominant, why there is not any large-amplitude Rossby wave observed in the
Jovian atmosphere, and why there is no feedback of turbulence energy to the planetary
waves but to the zopal fow. However, intensive disturbances exist in Jovian atmosphere,
for example, the Great Red Spot, which undoubtedly is a very intensive vortical centre, hence
is always maintained in accordance with our analysis in § F-2.

It seems that in such a medium as the rather homogeneous ocean and, probably also,
the Jovian atmosphere, where the relatively small-scale forcing is dominant, the zonal flow
or a weak but very large scale flow pattern is generated by the energy cascade due to the
two-dimensional turbulence; while as a zonal flow is established or in a medium such as in
the earth’s atmesphere, where Jarge—scale forcing is dominant, the zonal flow is generated or,
especially maintained by its jnteraction with Rossby waves,
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