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ABSTRACT

A family of nonlinear wave solutions, with Haurwitz waves as their zero-order approximations, to the
baroclinic primitive equations is derived and the corresponding cakulating system is presented. Numerical
experiments with a two-level global medel developsd by ourselves confirm the validity of the theoretical results
to a great sxtent.

I. INTRODUCTION

Haurwitz waves are a family of special solutions to the barotropic vorticity equation
on spherel'), They have been widely used in the testing of numerical weather prediction
models and general circulation ones since Phillips® paper®) published. Using a perturba~
tion method, Zeng Qingcunt®? has obtained nonlinear vemsions of certain Haurwitz waves.

Qur recent investigation! has shown that certain Hawrwitz waves with wesk barochi~
nicity can be regarded as the zerc—order approximations of some travelling wave solutions to
the baroclinic primitive equations on sphere. In this paper, we shall derive the governing
equations of nonlinear Haurwitz waves, construct a calculating system for nonlinear Haurwitz
waves in a two-level model and describe some preliminary results from nymerical experi--
ments,

II. PERTURBATION EQUATIONS

Introducing stream function ¥ and velocity potential X, we are able to write the baro-
clinic primitive equations on sphere as follows:
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i
where o is a normalized pressure coordinate and J, ¥ and A are Jecobian, gradient and
Laplacian operators, respectively.

With characteristic horizontal scale L*, characteristic time scale 2%, characteristic wind
velocity U*, characteristic surface pressure disturbance P*, characteristic hotizontal geo—
potential disturbance @* and characteristic vertical geopotential disturbance @** given,
the following dimensionless parameters can be defind:
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where @ is the radius of the earth, @ the angular velocity of earth’s rotation, p,, the
equivalent average surface pressure and &, the speed of the inertio—gravitational wave under
a certain standard atmosphere. For slow processes of the flow with farge scale and low
velocity, we can take ¢’ = e« 1,# ' =3¢ and "' =4§"¢, Furthermore, under the assump-
tions of weak barcclinicity and weak compressibility, we have e*=4%¢ and ¢"=4d"¢'.
Here, 6u,8™,5%and §” are the coastants with the magnitude of order O {(1}. Thus, the
dimensionless form of (1) can be written as follows:
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Expanding the variables and their governing equations (1} in the power series of the
small parameter ¢, we obtain the following zero—order and first—order problems:
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It should be pointed out that the Haurwilz wave given by Phillips is just a kind of
formal solution to (5). Therefore, Egs. (5) and (6} together constitute the governing equa~
tions of nonlinear Haurwitz waves.

III. COMPUTER METHOD TO COMPLETE CERTAIN SPHERICAL HARMONIC OPERATIONS

With Hautwitz waves taken as the zero-order approximation (hereafler referred to as
0-Ax) of ¥, we have to manage numercus nonlinear operations of spherical harmonics in
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solving Egs. (5) and (6). Instead of manual calculation, we tend to find a kind of computer
method to complete the operations along the lines of Ref. [5]
Define a family of polynomials {Q}(x)}, where
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{Q}{x)} can be calculated by using the following recursive formulas:
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Considering an associated Legendre function { p}(x)}, we have. .
pHx)=(1—x )" Q (x). : . (8)
It means that {pf(x)} and {Qf(x)} are one-to-one correspondent. Supposing
A= pi(x)coskA and B=p} (x){‘j;]‘jzjﬁ}, whete x=cos, we deal with the following

nonlinear operations of spherical harmonics: A48, J (4, B) and vA.VB. Using Eq.(8)
and product formulas of trigonometric functions, we have
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It is easy to prove that T,, T,, Ts and T,, T,, T, are all plynomials relative to x, and
their degrees are not above /,— &, and [, —&,, respectively, Thus, taking {Q;; Visrmiypges ot
and {Q;g | #+ =kg»hstrs+++} as the basis in the polynomial function space, respectively, we are
able to expand T,, T, T,and T,, T,, T, in the following forms:
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Using {8) repeatedly we can cbtain the spherical harmonic expansions of (9) as follows
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The main operation concerned in formulas (9)-—(12) is algebraic operation of polynomials,
which can easily be performed by computer program (cf. [5]). In fact, we have written such
a set of Fortran programs that all the operations concerned in solving Eqgs. (5) and (6) are

et
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able to be completed by computer.

I¥. NONLINEAR HAURWITZ WAVES IN A TWO-LEVEL MODEL

By considering a two-level mode! (cf. Fig. 1), assuming Eqs. (5} and (6) to bave a set
of travelling-wave solutions propagating along i-direction at a phase speed c¢=c, +egc,+...
and taking Phillips’ formula as the 0-Ax to the solution, Egs. (5) and {6) can be recast into
the following forms:
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where the second subscripts of variables denote their level’s numbers and ¥ | represents the
non-zonal part of ¥,.
The fourth equation of (14) shows that the first~order correction (hereafter referred to as
1-Cr) of the phase speed, c,, depends on either the divergence or the amplitude of the wave.
1t is just the character of nonlinear waves in compressible fluid. In fact, ¢, also depeuds on
the baroclinicity of the wave from the first two oquations of (14 .
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Fig. 1. Distributions of variables in the Fig. 2. Function of the two-level model

two—level model, . nonlinear Havrwitz wave system.

-« In order to get the 1-Cr of the stream, function, ¥, the following iterative formulas
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are used in solving the third eqmtlon of (14) ‘The. 1tt‘rat\on does not stop unul [Jprern

= <?, where p is the iterative index and | || represents the L,-norm on the

surface of unit’ sphere.

By using the algorithin described in Section I1I, the solwng of Eqs. (13), (14} and (135
can be ‘cartied out automatically in’ computer. Thas, -we, cani-abtain a calculating system
of nonlinear Haurwitz waves in the two-level model {cf Fig. 2), which can be used to

- m\festlgate nonlincar Haurwitz waves and to provide the initial conditions for testing of
“numerical models. One of important things is to select the parameters of the 0-Ax rea-
sonably. With regard to Phillips’ formula, taking L*=g//n(n 1)y F*=|F|l), we
have ¢320.3. H means that the corresponding Haurwitz wave may not be a  better
approximate solution to the primitive equatlons Actually, several experimentst’—* have
revealed that the wave could not keep its shape unchanged during the time integration.

¥. NUMERICAL EXPERIMENTS

Take a set of the model’s parameters and the 0-Ax parameters as follows:,
2r=200 hPa, p,=1013hPa, P, =288 K, #=120m s™';
m=4, n=5,

Q _%= (0.7381,0.6879,0.7029) X 107%s"",

(k=1,2,3).
-(0 5499,0.4652,0.4992) X 107%s™*.

By inputing them into the calculating system, all componpents of the nonlincar Haurwitz
wave are calculated and outputed in the forms of both spherical harmonic expansions and

ok
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grid fields. Table 1 gives the dimensionless norms and the corresponding characteristic
quantities of all the variables.

Table 1. The Norms and Characteristic Quantities of the O-Ax (Top) and 1-Cr {Bottom)

F Wnl 1/4 i [ APYR Pless 3“’0:: ‘ Ewan Thon cTeon
. | . ;
IF - 099 0.1 054 .36 3.28 0.2 , 027
! ! .
. | 6930 6500 816 | 2233 212 0.94 1.02
} m st | ome s hPa | 10§ | 10 5 k. K
. | ' ! A
k Wl.u! ¢'J.a/ﬂ I’ Ples, EW!-L AW .. T'::.l k Thz | AKXz ' E)fzuz T2tz
1
IFI 019 | 008 ’ 003 | 020 | 008 l 031 | 036 | 0% | .13 0.04
R "0 | 8o } 04 | 048 | 008 { 019 | 022 I 029 | 019 0.04
mis | mis hPa [m—s s|10 51| K ‘ Xogoesl o g0es |
i .

i
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The corresponding dimensionless parameters dre as follows:
ezﬁ-fzs ~0.18, |
Va2 ey =2, 48* !
1t shows that the solutlon given by our system satisfies the magnuude pringciple of p-erlurba—
tion analysis and meets the requirements posed in Section II.

Table 2. The Dimensionless Phase-Speed ¢, and the Corresponding Correction ¢,

k ‘ s

+
| e,
o |
1 l 0.665x 101 —0.442 x 10~

2 061210 | —0.152x 10t

Table 2 gives the 0-Ax and the .1-Cr of the dimensionless phase-speed at both the two
levels. Using them, we are able to calculate the theoretical phase~speed of the nonlinear
wave

180 86400

(cotec)sX T

=~=7.7%day™" (k=1,2).

Figs. 3—8 show the distributions of the 0-Ax and the 1-Cr of the geopotential height
and the vorticity at level 1, the distribution of the divergence at level 1 and the distribution
of the g-vertical velocity at level 3/2.

In order to test properties of the baroclinic Haurwitz: wave, we have performed twe
long—term integrations wnh the mmal conditions given by O—Ax n.nd l—Ax respectively,
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using the numerical global model developed by ourselves!:*,

The model is a two-level global primitive equation model in (8,4, ¢,¢) coordinates,
The vertical distribution of variables is the same as shown in Fig. 1 except v,,v; being
used instead of ¥, X, Arakawa’s C-grid is used in horizontal and the resolution is 4° x 5°.
The finite—difference scheme of the model is designed to conserve the total mass and the total
“available™ energy!'” of the numerical solution. The leap—frog method with Robert’s time
filtering and the Fourier filtering in Polar regions is used in time integration,

Fig. 9 shows the 50th day distribution of the peopotential height at level 1 under the
corresponding initial conditions {dashed line). By that time, the wave had already moved
through 369 degrees longitude from west to east, The calculated phase-speed averaged
over the fifty days is about 7.38° per day and just 0.32° per day slower than the theoretical
value. In several experimentsU'~*:v'4), the phase-speed errors are above 1° per day. It

ait W

1K dayt

Fig. 9. The 50th day distribution (solid lines)
of the geopotential height of 1-Ax
under initial conditions (dashed lines).

Fig. 10, The variation of the kinetic energy.
Dashed linc—linear wave;
Solid line—noniinear wave.

Latitude

L
¥ 20 40¢ms "1 ] 10

Fig. 11. The profile of the zonal wind averaged
over the first ten days.

Dashed line—linear wave;

Solid line—initial condition;
Dotted—-dashed line—nonlinear wave,

Fig. 12. The variation of the zonal wind at 20°N
(above) and 50°N  (below).
Dash lines—lincar waves;
Solid lines—nonlincar  waves.
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should be pointed out that one of the sources of errors may be the use of the inexact refer—
ence phase-speed ¢,. It can also be seen that the shape of the wave is still perfect after
a long-ternr integration. A further calculation shows that the average deformation error of
the geopotential height by the 50th day is about 100 m? 52,

The behaviour of the geopotential height at level 2 and the surface pressure are very
similar to the above-mentioned. However, the disturbance temperature, which is a second-
ary quantity.in a weak baroclinic process, displays an obvious periodic oscillation.

Figs, 10 and 11 give a comparison between the linear and nonlinear Haurwitz waves,
which shows that the nonlinear wave is more accurate than the lincar one.

Fig, 12 gives the variation of the zonal wind at two special latitudes. It shows that
the nonlinear interaction between the wave and the zonal flow in the evolution process of
the linear wave is stronger than the nonlinear wave. '
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