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ABSTRACT

Based on the resuits acquired in Part T of this paper, analysis is made of the theoretical mechanism of
thermal forcing multiple equilibrium states (MES) and their stability. The results are as follows: 1) non-
linear effect and external forcing are determinative factors for MES formation; 2) under proper *environ-
mental conditions” the forcing can excite stable MES, particularly three types of solutions, two of which,
with larger amplitude of resonance, are not sensitive to the change in the forcing intensity; while the other,
i. e. the one of small amplitude, dependent significantly on it; 3) in general, the domain of parameter values
for the MES existenoe increases, but the stability decreases, with increasing thermal forcing; 4) steady
thermal forced waves are always unstable for the most part; 5) thermal driving and orographic effect act
equally as dypamical triggers; &) friction has significant infAuence upon the behavior of MES solutions.

Analysis shows that the changes in the “environmental parameters’, such as the alteration of the shear
of a basic current and intensity of the forcing, induce the transition between different equilibria.

I. INTRODUCTION

Based on the asymptotic solutions of MES and their detailed operations demonstrated
in Part 1 (hereinafter referred to as [1]), this portion as the subsequent work is devoted to
the examination, on a theoretical basis, of the mathematic-physical structures of MES pro-
duced by near-resonance instability, and to the demonstration of the dynamic effect on the
excitation of the stable MES caused by thermal forcing. With the results obtained .in
both parts of this paper, we will propose 2 possible mechanism of the mutual transition of
the equilibrium states (ES).

The detailed governing equations of the model may be referenced in [1].

1I. THEORETICAL ANALYSIS OF EXCITATION, ESTABLISHMENT AND TRANSITION OF MES

This section deals with the dynamical mechanism of the near-resonance disturbance
o, 3. T), superimposing upoen the stationary thermal forced waves X, (x, }) as given
in (12) of [1], which develops a finite amplitude by linear instability and then approaches
one of the MES by the nonlinearity of the motion,
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1. Excitation of ES by Thermal Forcing Instabifity

Charney et al. (1979, 1980)1"*) and Pedlosky (198201 described the instability of a
zonal basic flow with topographic forcing and introduced the topographic instability. As
the first step of the theoretical analysis, our attention is given to the so—called thermal
forcing instability, responsible for the establishment of MES, i. e., the linear instability of
¢» upon X,

Since the spatial structure of ¢, (x, ». T) have been prescribed in (15), (17) and (18)
of [1], the undetermined part of ¢, is only F (x, T) of ${*’. It follws that the problem of
instability is turned into one to study the time-dependent behavior of F (x, T), under the
linear condition | F*| <1,

To analyze the instability of the basic states

F=0 and K=0 (1)
through the method of linearized perturbation by letting

. F=0+F =F'=exp(oT) > [Arcosnx+ Bysinnx] (2)
an n=1

K=0

in {17y of [1], we obtain

aF’ o F aF” , ,
& G T ’(ax‘ + {ag(a4+moosz!nx)+F (a,+aqgsin 2l,x)

i f2a
—a,, oF’oosI.,xdxcosiax +u‘,ju Freonloxdaxcoslyx--0, (3)

in which such terms as a,, 4, and &,, are neglected as they are all proportional to the
constant K.

In terms of the orthogonality of the trigonometric function, a system of linear homoge-
neous algebraic equations for spectral coefficients 4. and B, is obtained, whose determi-
nant of the coefficient matrix, when a zerc value is given, can prescribe an eigenvalue
problem for the eigenvalue . By applying the “0-R” separation method to this eigenvalue
equation, we arrive at the results that, over a rather wide range of the parameter values,
1) without heating and dissipation {Q,=r=0) (in this case thermal forced waves in (12)
of [1] degrade into a purely zonal basic flow), all the eigenvalues obtained have negative
real roots or complex roots with a megative real part; 2} with heating and dissipation,
they have positive real toots or complex roots with a positive real part. Apparently, it is
the incorporated external forcing that epables the steady forced wave to develop unstable
cases. Since the zonal basic flow is asswmed to be baroclinically metastable, and the disturb-
ances shown in (2) has the same large-scale feature as thermal forcing, it is evident
that the instability illustrated above is different from the general baroclinic instability and
thus called “‘near-resonance thermal-forcing instability”.

2. Structures and Domains of ES Solutions

To discuss the MES solutions obtained in [1], the relationship between self-oscillation
frequency and amplitude n the nonlinear forced inharmonic system in (35) of [I] should
be estzblished together with the conditions for the occurrence of the resonance of the
system, Setting C,=C, =0 (meaning that no forcing and dissipation take place) for {43}




No. 4 MES UNDER NEARLY RESONANT THERMAL FORCING (II) 395

of [1], we have
1
21,m§+?.:§ (C,ea) =0 . (4)

Applying the near-resonance assumption a,=/(1+el,), |if,e| <1, we get the de-
pendence of frequency upon amplitude in the nonlinear free system
e(C,ea)?

a=w,(1—el) =0, Wﬁér . {(5)

With forcing and dissipation available and @{a)=/{, as the frequency of external forcing,
and by use of (5), we obtain the condition for nonlinear rescnance due to forcing, namely,

121,1, 2
a=(—f5;7‘) , (8)

which requires !, <0, i. ¢, @,<l,. Since w,ocl/~*/%, the shear of a basic flow con-
sidered therein (U, —U,=1U/) is supercritical as regards the threshold of linear resonance.

When C,=C,=0, the root of the algebraic equation {(43) of [} for determining the
amplitude of the ES solution is in the form

1214,
a*=0, or, a3=—)CW (double roots). (7)
22
Therefore, (6} corresponds to the only significant solution of (29) of [1] when no forcing

and friction happen.
Alternatively, by letting C,=0 in (33) of [1], we get

z e
azics|/(f—;+4ma) : (2)

which implies that in 2 nonlinear case, (29) of [1] possesses a single solution. From the
anglyses above we corme to the conclusion that for the system (27) and (28) of {1}, none of
MES solutions can exist when no forcing and nonlinear effects occur.
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Fig. 1. The MES solution curve (golid lines) Fig. 2. The inviscid linear ES solution
and nenlinear resonance curve {(dotted- {dotted line) (»=0); the viscid ES
dashed Tne). Q,=0.1; r=0.03 (1;7)!/%; solution (solid line) (r=0.2:); 3,=0.1
K=—075; =15 and e=(1/7R/. and the other parameters are as in

Fig. 1.
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Fig. 1 shows again the MES solution curves and the nonlinear resonance curve dom--
inated by (58). It is interesting that very small thermal forcing can excite two ES solutions
whose order of magnitude is twice or more as large as that of the forcing, which is evident-
Iy due to the resonant effect. This is jllustrated as follows. Suppose DET=0 for {50} of
[1] gives U, as the critical “bifurcation’” point for the appearance of multiple solutions
and U, as the point for their disappearance, then, when U < U<U,, (43) of [1] has three
solutions, two of them are of large amplitude and resonant in nature and correspond to the
soluttons of its own with Cy=C_ =0, and can be approached by (6); the other, a smaller-
amplitude solution, to the linearity solution of the equation when C,=90 and by (8). From
(6) and (8) it is clear that large-amplitude resonance solutions of (43) of [1] are not sensitive
to the change in the thermal forcing intensity (0, and the reverse is true for the linearity
solution.

The distribution of the solution of (8) in the linear case as the function of U js de-
picted in Fig. 2, where the “skeleton curve” in Fig. 1 becomes symmetric to the straight
line I, =0 (U,=0.71), and particularly in the case C,=0, 4— + oo with / -0, the linear
resonance takes place. It is noted that the result of (5) agrees well with that of Trevisan
and Buzzi (1980)1¥), which states that the presence of nonlinearity modifies the natural
frequency of the linear system by a correction term proportional to the square of the
amplitude. Tt is apparent by referring to Figs. 1 and 2 that the nonlinear system shows an
inmtuitive figure of the modifying effect, where the resonance curve /, =0 (if C,=0) orig-
inally in the problem of linearity is made to deviate to the region ,<0 (U>U,=0.71)
providing possibility of the existence of multiple solutions. And the stronger the nonlinearity,
the larger the deviation, the wider the range for the multiple solutions and the smaller the
difference in their values.

As shown in Fig. 1, the lower-branch small-amplitude solution (curve III) does not
decrease with increasing U as illustrated by Trevisan and Buzzi (1980)'*) but increases
with U as indicated by Pedlosky (1982)(1 for the baroclinic problem. Since, as will be
shown, Fig. 5 corresponding to Fig. 1 still shows that the behaviors described above after
dissipation has been removed, the comparison of the solutions with fixed @, in Fig. 1 to
the ES solution structures by the barotropical model of Trevisan and Buzzi (1980)!*) in—
dicates that the growth of the small-amplitude selution with U in the muiti-solution domain
has resulted neither from frictional dissipation nor from the difference between forcing
and orographic effects; but, most probably, from the baroclinicity of our model. This is
the manifestation of the influence upon the MES solutions of such baroclinicity in the atmos-
phere as thermal-wind vorticity advection caused by the vertical shear of a basic current.

Now that the spatial structure of the solution over the domain of the parameter values
is examined, with DET =0 in (40) of [1], we have a critical relation of Q, to {, (hence to U)
for the multiple solutions of ¢* in (43) of [1], that is,

1 718, Cine 2 Ci) /Gy
= 17?(‘3"“?) -5 )/ (385) 2)
and, by setting C,=C,=0 in (49) of [l], we obtain
2y 1413
pETe( 5 ) —55(5 ) <0
meaning that (43) of [1] still has multiple solution for a*.  Yet (6) or (7) in this Part indicates
that (43) of [1] gives a unique solution for a only.
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It it evident from Fig. 3 that the multi-solution region is widened as U7 prows, and
within the near-resonance section of U, the upper-boundary value of Q, is far higher than
its given value for solving (29) of [1]. In the case Q,=0 (i. e. C,=0, and C,=0 as required
by the compatibility of the model), as (29) of [1] does not give multi-solution for ¢, &,=0
as a “singular line” can be set to be the lower boundary for the multi-solution section
of ¢ within the region of a®. It follows that even if J,=0, {29) of (1] always yields more
than one solutions for @, however small @, may be. The result was also obtained by
Trevisan and Buzzi (1982)1) in studying the stationary response of barotropic Rossby waves

to orographic forcing.
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Fig. 3.

The multi-solution region (hatched)
for a? given by (43) of [1}. The
upper limit is set by (9) and the
lower limit ¥s Q,=0, with the
other parameters as in Fig. 2.

Fig. 4. Distribution of the ES solutions togeth-
er with their atebility on the Q,-U
plane. [t denotes a region with no solu-
tion; 11 with one stable solution; 31
with one of the three solutions being

stable; 32 with two of the three solu-
tions being stable; 33 with three stable
solutions. The region with at Jeast one
of the solutions being unstable is shad-
ed, Qp=—2+log2 and r=0.02s,

Fig. 4. demonstrates the numerical results of the number of @ as the sclutiong of (43)
of [I] on the @, — U plane. It is evident that although the domain of the multiple solutions
of a is narrowed as (, diminishes, its MES solutions exist even if @, gets considerably
smail.

3. Stability Analysis
OFf all solutions obtained in Part I only the siable one is of significance to the ES
of the actual atmosphere. For this reason stebility analysis should be made of all the
solutions acquired.
Suppose that for (27) of [1],

Fz, ) =f(x)+F{x,T) (10}
is set, where f (x) is the ES solution found in Part I and £ (x, T) the disturbance. Putting
(10) into (27} of [i] and linearizing the resulting equation, we have the equation of disturb-
ance

aF” PF BfF"  aF’
s o ta g 1o Tt ox

(a,+a¢5inl,x+a,c0922)
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+F{as+a,cosl,x+aysin 2l,x) +a,, [:F'oosfuxdxcosf,x
w D

A
+a., Feoslyxedxcost,x=0, (1)
n

Assuming
F'(x,T)=exp(6T) D, (Acosnx+ B, sinnx) , (12)

where A,, B, are constants which limit the analysis to the first three sine and cosine har-
monics, and inserting it into (11), we obtain the following eigenvalue problem for:

a.g+ag+‘§’—f\7, (8 —3a,)/2 G @ 1 - \
+(az~a:)/2 ’ ’%(‘N'_N‘) _%ast ’ EGS(MR—Mdi
a0+ 24, — 8a,
0 + %-a,,+a3N‘ 0 0 —a,M, 0 I
(a,+a)/2
+3avany 0 sote  FaOLMO 0 sasae |
! a0+ as
a—a- 2, 0 ~ LM+ M) +%cs—%c3N2 0 —alN.-la
0 8a, — 24, 0 0 .0+ a; 0 l
| —aM, —a,N, |
Lr—g-as(Mz+M.) 0 27a, — 3a, —%—aﬁ 0 a,o+as J
(13}

where M,, M,, N, and N, are the coefficients of cos2x, cosdx, sin2x, and sindx, respec-
tively, of the ES solution f{x) determined by (48) of [I]. Within the range of the parameter
values considered, calculating o by the “Q-R” separation method yields the results as shown
in Fig. 4 When thermal forcing is less intense, all solutions are stable. Especially over
the range of the parameter values in the neighbourhoed of U/=1.0 and @, =10"5—107,
{hree stable solutions are likely to exist. They are, however, different in stability. Usually,
the middle-branch solution is less stable. When thermal forcing is strengthened, reaching
Q,,=0.02, unstable solution occurs, but at some parameter points two stable ones can still
exist. In the latter case, the upper— (large- ) and lower-branch {small amplitude) solutions
are bound to be stable and the middle one unstable {refer to Fig. 1).” If only one stable
solution happens, it may be either the upper or the lower one.

In general, with increased forcing, greater as the likelihood of MES solutions is, that of
their actual stable ones gets less owing to the growth of instability. In the case of appro-
priate heat-source intensity there is much possibility of two or three stable solutions, which
suggests a new conclusion of this problem.
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4. Influence of Dissipation upon Existence and Stability of MES
In the absence of friction, i. e. Cy=0, we get from (49) of [I]

DETeckt ] § +( C§§1§e')!/li J-a(3)H

C,Cee 1 /13072, 2
When z§<—( e ) / E\T/Ts(ﬂ +—9-],DET<0 and (43) of [I] always has more
solutions. That is, U, in Fig. 1 will get »1, and in any finite section where U™>U_, MES
solutions are available.

On the other hand, if friction is stronger, say C§213—31;“‘I; (where [* is a maximom

of I, over the region in accordance with near-resonance assumption), the DET>>0 is always
true so that (43) of [1] gives a single solution. Figs. 2 and 5 display the curves of (43) of
[1] as the function of U for r=0.2 (Q¥/0.7) and r=0, respectively.

aly
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Fig. 5. Curves of MES solutions and nonlinear resonanoe. The
parameters are as those in Fig, 2 execept r=0, and
@, =—zf =1 —wufly,

To analyze the influence of friction on the solution stability, eigenvalue ¢, at various
degrees of friction, is calculated. The results are: 1) for stronger friction a single solution
obtained is always stable; 2} with no friction the upper-branch {large-amplitude) sohu—-
tion is stable only within the regions ©,202 and @,<003 (0,=—el,=1~a,/{,)
while no stable solutions occur in the bifurcation section where three solutions undergo
transition, i. e., a single solution passes into multiple ones, as shown in Fig. 5.

The comparison of the resulis of Fig. 2 with those from the orographic forcing study
by Trevisan and Buzzi (1980)1*1indicates that in the absence of friction, the likelihood of stable
MES solutions is less for our baroclinic mode!l with thermal forcing than for a barotropic
model with orographic effect and that the transition among MESs is hard tc happen. How-
ever, for the rational model atmosphere always with the simultaneous occurrence of ther-
mal forcing and frictional dissipation under consideration, the above situations would not
OGCHT,
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3. Mutual Transition among MESs by Altering External Parameters

The inter-state transition mechanism is rather complicated. A possible approach is by
altering environmental parameters o bring about an abrupt transition. This idealized
eruption model can be described with the aid of Fig. 1, where as ¥ decreases, a state cor-
responding to the sysiem is moved towards U7, along the path of the lower-branch solution
and, as soon as U arrives at I/, the state experiences a sudden shift at peint A, going vp
the path of the upper. And if U “‘marches” from a singlesolution region to a multiple-
solution one, then the solution of the system will grow correspondingly, entering the upper
solution section without changing its phase, and shift to the lower section on reaching
point B in relation to /,. In our subsequent work we shall provide a more complete model
to simulate this sudden-transition mechanism numerically.

In addition, change in forcing intensity can also bring about such abrupt transition.
Refer to Fig. 4, When U =075, (29) of [I] yields a single stable solution for Q,=107%,
the states become unstable for ,=10—/2 and the equation gives three solutions for Q,=
10—', Calculations show that only the maximum-amplitude solution is stable, which can be
regarded as the single one only when Q,=10"%, and is the product of the abrupt transition
caused by the change of @, This transition model is constructed on the so—called “‘catas—
trophe” theory in mathematics, described qualitatively by the Hopf thecrem. Dutton
(1981)%? and Vickory et al. (1979 showed that in a thermal forced and dissipative system
of the atmosphere nonlinear quasi-geostrophic Rossby waves are subject to such behavior
as given above, which is also indicated by Li Maicun et al. (1983)"* in the study on a
nonlinear mechanism of the atmospheric circvlation in a similar system.

11. CONCLUDING REMARKS

Based on the results shown in Part I analyses are made of the mathematical-physical
structures, domains and stability of the thermal forced ES sclutions. The results illustrate
that over some domains of the parameter values there can exist three ES solutions, two of
which have extremely large amplitude, exhibiting near-resonance but are not sensitive to the
change in thermal-forcing intensity, the other, of smaller amplitude, being entirely dependent
on forcing. Stability analysis shows that 1) the stability of the ES decreases versus increas—
ing forcing; 2) with an appropriate , more stable ES can occur, as indicated by the more
steady balance between the advection and nonlinearity term in (29) of [1] with weak
forcing; 3) if only one of the three ES solutions is stable, then it may be cither the maximum-
or the minimum-amplitude one and, if two are stable, then they must be the upper— (large-)
and lower-branch (small-amplitude) ones, the middie one being unstable, as demonstrated
in Fig, 1; 4) in particular, when {, is small, the three stable ES are possible only with some-
what different stabilities. It is noted that the upper and lower sclutions can be utilized to
simulate a persistent blocking (a low-index flow) and a quasi~zonal circulation with a strong
west-wind component (a high-index flow) in the mid-latitude troposphere, respectively.

The study of the thecretical mechanism of MES indicates that both nonlinear effect
and near-resonance external forcing are critical for the occurrence of MES while dissipation
is important only in a relative sense. The nonlinearity referred to includes both the inter—
action between forced waves and the disturbance and self-coupling of perturbations, Only
with the aid of the former can near-resonance external forcing exhibit its effect as a trigger,
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and only through that of the latter can the linear structure within the system be modified,
thus making it possible for the occurrence of MES. Moreover, the nonlinear resonance of
the forced and {ree waves results in an increasing but limited amplitude of ES. As far as dy-
namic triggering is concerned, purely thermal effect is as important as orographic forcing
in the excitation of MES. Consequently, although the situation of multiple solutions seldom
appears when thermal forcing is little, there does enist the possiblility for its occurrence so
long as such thermal effect is available, no matter how small it might be.

Further analysis and discussion show that the change in the atmospheric environmental
parameters can lead to the sudden transition among MES, which, however , generally depends
on an unstable or poorly stable ES as a “bridge” for the shift. Such transition can be
brought about by altering either U or (2,. There are many types of mechanisms for tran-
sition. We shall propose another possible mechanism in dealing with the establishment of
MES in another paper.
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