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ABSTRACT

A double parallel-connection (DPC) Lorenz system is developed by performing spectrum truncation
of the Galerkin series expansion of the two-dimensional Rayleigh-Benard convection equation. Analyses
of the equilibrium states indicate that a convective roll stems from a fow with a given wavenumber first
losing its stability for a particular aspect ratio g after a stable laminar flow gets unstable; when £ has the
value f. able to deprive synchronously two flows with different wavenumbers of stability, occurrences of
convective rolls with dJifferent wavenumbers depend entirely on the initial conditions, in good agreement
with the relevant experimental results. The calculations of the unstablized rolls show that, with a smaller
£ (as compared with 8,), the DPC Lorenz system has the same bifurcation properties as the ordinary Lorenz
system; for a moderate 8, the system has very complicated periodic, quasi-periodic and phase-locking
motions; for a larger B, it results in intermittent chaos and causes mean flows with different numbers of
vortices to occur alternately with time. All these indicate that # has substantial effect on the two Lorenz
systems coupled through parallel connection in their interaction and the resulls.

1. INTRODUCTION

In the convective experiments the ratio of a boundary length L to a height H is
an aspect ratio denoted as g, which plays an important role in the establishment of ther-
mal convective rolls and turbulence, Davis (1967)'1 made an investigation of the effect
of # upon the number of rolls. The results show that, there is a corresponding wave-
number for any #; when the Rayleigh number gets above a threshold R,, the flow of the
wavenumber becomes unstablized first, thus giving rise to the same number of rolls, which
is supported through experiments by Stork and Miller (1972)1:1. They found that when
B approaches values capable of making two currents of different wavenumbers unstablized
simultaneously, the numbers of rolls observed may differ in different times of experiment
under the same external conditions. This was also obtained by Plaiten and Legros (1984)U3],
a problem that cannot be worked out by the linearity theory.

Observations of the effect of § on the set-up of turbulence should be briefly reviewed.
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Three values of g were tested in the cylinder convective experiments by Ahlers and Behringer
(1978)t3. By altering the Prandtl number and aspect ratio in a Bénard convective experiment,
Gollub and Benson (1980)(° observed a variety of approaches to turbulence which can be
generally reduced to three accepted types of mechanisms leading to chaos: i} a mechanism
by which chaos takes place through an unlimited number of period-doubling bifurcations
(Feigenbaum, 1978, 1979)151; ii) a mechanism causing chaos 10 happen when quasi-periodic
motions with independent frequencies become unstable (Ruelle et al., 1971)%; and iii) a
mechanism in which a saddle point bifurcation and intermittent chaos occur (Pomeau and
Manneville, 1971)%,

In this study, by making the spectrum truncation of the Galerkin series expansion a
DPC Lorenz system is built up, a system constructed in a coupled parallel connection way
consisting of two Lorenz equations describing a single-wave motion. A discussion is made
of the influence of £ upon the bifurcation properties of the system. Section II treats the
establishment of the system together with its general features, In Sections IH and IV the
properties of the steady state solution and its physical significance are dealt with and compa-
red qualitatively with the experimental results, In the subsequent sections a discussion is
made of the bifurcations of the system after the solution becoming unstablized.

II. THE ESTABLISHMENT OF THE DPC LORENZ SYSTEM AND ITS GENERAL PROPERTIES

The dimensionless equations for the two-dimensional Rayleigh-Bénard convective
behavior have the formsle1'3
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where p denotes streamfunction; # departure of temperature from a linear prefile; P and
R are the Prandti and Rayleigh number, respectively. For the equations the boundary con-
ditions can be set to be

p=Ap=0=0, 2=0,z
—Ap=_09 _ - (2)
p=Ay= e =0, z=0,8=n

in which g is aspect ratio (g=1/8 will be used in equations hereafter). Through the expan—
sion of the Galerkin series the solutions of Egs. (1) and (2) can be put into the forms

=l

] =i thmu(i)sin(amx)sin(nz) .

=1

o

8= 3 6mt)cos(amx) sin (a2} . (3)
m=10 r=1
Inserting (3) into {1}, one can obtain a set of infinite—dimensional ordinary differential
equations describing the amplitude evolution of the wave components g,.(t) and #1212,
pamely,
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where A (m, #) =a'm*+nt, with g= 1/8. The soluticn of the equations above can be
obtained only through truncation. In dynamical systems formed by means of different
truncations the mechanisms leading to chaos are quite distinctive in quality, which has been
demonstrated by comparison of the results of the increasing truncation number by Curry
et al.l'*l and that of Curry’s 14-dimensionall'®? with a 33-dimensional model by Zhong
et all'") These truncations include modes of m+n being even numbers of ¢, and 8.
Note that (#, #) will be used to denote g, and 8, hereafter. As indicated by Zhong et
al.l'1) thesc modes are, in fact, obtained by truncation of a spectral series excited in suc-
cession by the mode (1,1). The idea of the excitation is based on the fact that, if initial
disturbance is given to the mode (m,, »,) only, then all other modes but g, ., and f, .
are zero. Putting these values into Eq. (4), then some new non-zero modes except (m,, #n,)
will come out due to non-linear interaction. If these modes are put into Eq. (4) as initial
values, the re-appearance of themselves and other types of modes can be excited as well.
Each time when this procedure is done, new modes will be praduced, which is referred to
as an “excitation”. The mode sequence thus excited is as follows:
(,mns"a)"‘*(mu”a):(D’Zﬂo)_’(mosna);(0,27112)9(??1013%)—’
*("’o;ﬂn):(OsZﬂu)»(mns3ﬂo)s(0s4ﬂn)s{zmua4”u)s(2mup2"n)p
(0’6%)’(”‘0,5"0)"*"'
If the mode set .4 is produced in the Kth excitation, then, from (4)

A.§+1={(P+q’i+j)!(P+q’li—_jl)!(]P—QI’£+!)!(1P—QI s [i=71). (0, 1)
" Pji#qgi Pj+qi
(Pyq),(§,f)E A}
It is easy to prove by an inductive method (see Appendix) that the set totality due to excit-
ation is
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w B=1,2,
ZA.;—“—A.,,Z {((2’4‘1)"&,(2!%“l)ﬂu);(z‘rmnszkﬂo)s }!
a=u l=0,1,
which shows up as a sequence at the cross points in Fig. 1. The Lorenz system is there-

fore composed of all modes due to the first excitation of (m,, n,).

In this paper, by initiating disturbance synchronously at (m,, n} and (m,, n) the respective
Lorenz systems (m,, n), (0, 2#) and (m,, #), (0, 2n) due to the first excitations are devel-
oped together with the cross terms (m, +-m,, 2n) and ({m, —n2,|, 2n). By neglecting cross
terms and retaining {(m,, n) (m, n) and (0, 2#), a double Lorenz system is obtained,
that is,

. . _Pam,
P = — PA(m, ) Pmyn T ACm, ,n)gml" ’
amlﬂ =m1na¢'m1_llguza + Ram!wmlu - A(ml ’ﬂ)gmln E]
] Pam,
Py = —PA(m,,n) Pyt A(mg,ﬂ)gm’ﬂ’ (5)
B.m,n:m:ﬂﬂEDm,»aoz-‘l‘Rﬂmzlpm,-—A(mu")gm,n
1 1
eozn = - E am.nqu,,,l.ﬂ,,,‘.. —Eamzﬂwm.nﬂm‘n" 4”2602n‘

Note that m, =1, m,=2, n=] and F=10 will be used later in this study.

It is apparent from (5) that, if the initial values are (p3.,, 04,., 0, 0, 6..) or
0,0, ph.s O%ay Busn) Where g, 4 and @7, or @7, and 7, are not zero concurrently,
then Eq. (5) will be degenerated into the systems consisting of @, @m0 Boen O Proges
Dgnso:a, which can be termed the subsystem L, and L, respectively. §,,,is a mode
common to £, and L,. Only when the independent modes of L, and L, have a non-
zere initial value will the subsystems interplay, or else they will evolve separately. In
this sense, the two subsystems have a coupled parallel connection betwegen themselves and
the *on™ or “off" of the *‘switch™ depends on whether the initial value is zero or not.
(see Fig. 2)

In addition, Eg. (5) has some common properties as the Lorenz system, such as i}
symmetry, i. e., (Wmlnrgm,_u)"(‘“(]-’mlr-,"gm,_:z) and ('Lpﬂ,n,ﬂa,n)“"(—@mln,'—Gu,ﬂ)l

ii) dissipativity, 1. e, v - V= g%:f+ gg::: %:\: gg’::}+%%'ﬁf=‘( P1)x
(A(m, sm)+ A(m,,n)) ~ 4n*<C0 and iil) boundariness, obtained by making the following

Liapunov function:

V=R(n= 7 ) ACmisnpiat s 03t R(n= 3 Jmasa)ghan

1+ 208t PGt 2R

then
V=—2p [ R(n»—%).&‘ ()t A, )0

R (n= ) Ay )pd,n g ACmy )it i (Bonnt RY — 'R |
=—2PLf(V)— it RY].
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Fig. 1. Schemagical flustration of A.. (x, ¥ Fig. 2. The DPC Lorenz system is shown sche-
€d, if (x, »)is a cross point of matically. The “‘circuit” is closed when
two lines. the jnitial value is not zero.

If a point is beyond the curved surface / (v) =4n*R?, then flv)>4n*R?, leading to V<90,
thus making the solution bounded®‘l,

ilI. THE EQUILIBRIUM STATES AND THEIR STABILITY OF THE DPC LORENZ SYSTEM

By setting the right side of (5) to be zero and solving the corresponding algebraic equa—
tions, we have the equilibrium states (ES), which depend strongly on 4. Fig. 3 illustrates

3
a2 cupve I'elating Re to a, W.Ith an=nszmllismzzh(ml?M+m=213)]=0.49343 :Rclzﬂwa(:n_;:n)s
i
A“(m;m) :
R, = e R and R, =min(#, ,R..).

According to a, the ES sciutions can be grouped into two classes: i} asa,, then

R, =R, and Eq. (5) has five ES: C=(0,0,000), C,*=(im¢éiﬂ.@—ﬁﬂ) ,

10m s 8(R-R.)
g dlm ") V(R - Ro) ). 0,0, ~ = (R~ R}y Cua= (o,o,i‘%((m nf}"’

am

)\/s(R Rys - %(Rﬂgﬁ)); i) if a=a, then R, =R, =R, and (5) has

Al o) «

C,=(0.0,0,0,0) and a closed elliptical curve C, Z(H"(mli{z)“/ 8CR—R.y sinx, 20!

o F Y i 1 1
v g(H—R.) sinx, Efml,Tf”/ 8(R—R,) cosx, A(m n)v" B(R—-R.) cosx, - X

{R—R) } {where 0<<x<C27z is & parameter and x=0, %, o, %ﬂ' correspond to C .,

Cis+» Ciy C,), as its ES.

The stability of the ES solutions above are determ.med in terms of the eigenvalue of
the Jacobian matrix of the function on the right side of (5). Analysis indicates that C, has
five .real eigenvalues that are negative when R<R, so that C, is stable; if &>R,, at least
one of the five is positive, C, being an unstable saddle;node. After C, becomes unstable it
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bifurcates into C,, or C,, or C,, depending upon g, i. e.,

i} when a<a, R. <R, and with C, unstablized, C,, branches out of C, and
has five cigenvalues, two of which are negative real and the others are determined in terms
of the equation

AP+ 1)A(m »n) +4n YA +dn* A m; , n) (P +r)A

+ 8P A (mn)(ri—1)=0, (6}
where r,=RJR., with i=2. When r,<r. =P (P4+3+4n*/A (msn)) (P—1—4dn’/
Almyu))~, Eq. (6) gives three roots that have negative real parts, implying the stability
of C,,. When R>R., C,, also bifurcates from C,, with one of its eigenvalues being
positive real, meaning that C,; are never stable, as shown in Fig. 4 A comparison of
the results of the Lorenz systemls®] with this casc indicates that the steady state {85}
nature of (5) can be fully described by L,.

A
150
Cy is unstabsle
161
i |
o is stable i Co & sable
oL s .
0.5 1.0 a
Fig. 3. A curve showing the relation of R. Fig. 4, A diagram of the bifurcation of the ES
to a. solutions with a<la..

i) when e>a,, B, <R, In the discussion of a<g, the properties of C,; and
C,s exchanging with each other will fit this case, which means that the 8§ nature of (5)
can be entirely described by L,.

i) when ¢=a,, R,=R. =R,,. C, comes out of C, after it gets unstable, C, is a
nonisolated equilibrium state, the first critical case of Liapunov®*¥), always with a zero eigen—
value for each point. The other four eigenvalues are given by Eq. (7):

A'+LP+ 1)(44(’"19?1) + Al ) + 473+ (P + DI{P+ 1)-‘4('”1 !ﬂ)-"-[(ml ).
+art(Alm, ) + A(mysm) 1+ 4t (r = DLA(m, »n) sin* x + A(my s n) cos’x 1A
+ L4 (P+ 1P+ r)Almy s ) Almy 1) + 802 P{r— 1){ A (1, yn) sin*x (7)
+ A2ty 1082 )4+ 887 (P + 1)P(r — 1) A(m,, n) A(rissn}
X [A(m,,n)sinx+ A(m,,n)cos’x]=0
where r=R/R,. Now we set {7) o have the form 2A'+a A +g,A°+a.A+a,=0, where
all coefficients have to satisfy (he Routh~Hurwitz conditions for all A to possess a.negative real
parttt*]  These conditions are:

iy D=a=0,
a, 4
iy D,= =a,0:—a,=0,
1 Uy ]
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If any of these is not satisfied, then positive real parts will occur in the roots. For Eq. (7),
Cond. i} is satisfied and, when r>1 and Cond. iii) is satisfied, the same is true of iv).
In terms of D,=0 and D,=0, the critical Rayleigh number r.(x) and r.(x) can
be obtained respectively. Comparison shows that r, (x}<R.{(x), with 0<x<2xz. Let
ro(x)=min {r.(x), r,()=r.(x) and for R <RR, r.(x), Conds. ii) and ii}) are
satisfied, leading to the fact that all roots of (7) have a negative real part. A curve of
the relation of r(x) to x is shown in Fig. 5, where on¢ can see that, when r<lr.(0)=

4 4 =1 . .
P(P+3+ m)( P—-]—m) =2].548, the eigenvalue of each point of C,

has a negative real part (excluding the zero one), which indicates that C, is stable according
to the Liapunov theorem of the first critical case's). However, C, is one-dimensionally
.undeterminable, meaning that any initial value given in the neighborhood of C; will move
to and stay at some point of €, with the initial value specifying the movement to the
full extent.

1¥. THE PHYSICAL SIGNIFICANCE OF THE STEADY STATE SOLUTICNS OF (5)

The significance of the S8 solutions of {5) can be interpreted by means of the so—called
method of small-parameter expansion. As shown in linearity theory, for a certain 2

3
there is R,=inid*(m,n) fa'm’ =‘4—(a"'m"—) When R<R,, Eqs. (1) and (2) have
m, a
only one steady solution of a stationary laminar flow y=¢=0. And when R>R,, the wave
with the wavenumber (. n,) loses its stability first of all, whose solutions can be found in
terms of small-parameter method!'®), if the difference of R— R, is small.
Let

R=R,+eR,+ &*Ry 4= ZafR.-,
P=1
¢=B§b‘"’+6"¢“’+83¢“’+"'= ZG'W"-“: (8)
=1

9=89(°J+8!9‘”+£’¢(“+ P iagg(;—l),

where R,=R,, ¢ is a small parameter. Putting (8) into (1), we have




No. 4 BIFURCATION OF A SPECIAL (DPC) LORENZ SYSTEM 413

a 26 1K) a 1£12 2 407) [F3) 2 h 0 f} [#9]

at A N8z ax  ¥x ez
e 3 aates (9)
AL @A oyl op o4’
TR YT L( 9z &x Ax 9z ) Ry +,§KH +v180,
K=192y3""
and
2 id) (a)
av 11' Pae +PV ‘ibm’
a8 R, a0
& " ax

The latter is a system of linear equations, whose solutions can be set to have the form of Eq.
(3) according to the boundary conditions. Inserting the form into (10), we obtain a set of
equations whose ES solutions satisfy:

_ (4 Pam w
PA(m,n)p"s A, 3 '

Roamols— A(m,n)ﬂ‘f.’..=0. (11
(n=1,2,3 m=0,1,2,.)
We can know from (11) that all but modes (p‘,,,‘”,, and 6“" are zero. Hence with the
zero-order approximation =gl sin (am,x) sin {#,2) and 0@ =40}, coslam,x)sin(r,z)
as a starting point, Eq. (9) is put into use repeatedly as K increases, leading to the
fact that (9) are linear equations for ¢ and §'%? with the solutions in the form of (3). 1t
is apparent from (%) that, owing to the non-linear interplay of the SS solutions of kower—
order, some new non-zero modes in the S8 solutions of any order of yp*’ and 9% will
come about and these modes are the same as those yielded in the Kth excitation as de-
scribed in Section II, that is,
‘m”n » H“” "’(P“, m L7% ] ggg.n"’ ‘Prm”.nq 6 n.segzz,n‘y (plmﬂgﬂu’ 05..’;;«; .
It follows that when R approaches R,, the Lorenz system corresponds to the firsi-approz-
imation description of the convective equation. Kuo has goi a Yth-order approximationt*’,
the result being in good agreement with experimentation.

As a changes, (m,, n,) alters accordingly. Eq. (5) includes two independent Lorenz
first-approximation modes (m,, n), (0, 2n) and (m,, n), (0, 2r). Therefore, the stable
C, is able to describe the stationary laminar flow when a+#a,, while the steady C,, and
C,; have ability to describe convective rolls produced mainly by the flows with wavenumbers

(m,, 1) and (m,, n) tespectively, as illustrated in Fig. 6. When a=g,, R, —mf"{ (m’")

A (m,,n) Aman)
a‘mi a’m;
first-approximation S§ solutions ¢ and @* include modes (a1, #), (M 7, (O, Zn),
(|m,—m,, 2n), (m,~m,, 2n). Therefore the modes truncated in this article are not really
a first-approximation for a=a,. However, the results can be used to qualitatively interpret
the phenomena observed in the experimentation indicated in Refs. [2] and (3] fo a great

, and hence $ and "' include modes (w1, #) and {m,, n) while the




414 ADVANCES IN ATMOSPHERIC SCIENCES Vol. 3

extent. For a=a,, the S5 solution is a stable closed elliptical curve containing C,, and
C.;. The number of rolls formed can be either {m,, n) or (m,, n). All the two patterns
shown in Fig. 6 will take place, but which state will emerge depends completely on initial
values. Thus, if g is equal to such critical values, then two different numbers of rolls may
occur in two different times of experiment, despite the external conditions being the same.

r.{x)
28

26

24

” 9OE| ©

20 “ ’

0 o 60 90 x (deg) () bt
Fig. 5. The curve of the relation of Fig. 6. Convective rolls yielded chiefly by the
re (x) to x. flows with wavenumber (2;1) {left) and

(1,1) {right).

v¥. THE BIFURCATION PROPERTIES OF NON-STEADY-STATE SOLUTIONS OF EQ. (5) FOR
a=a, . -
The stability of the ES of (5) and the physical significance have been investigated in
previous sections. Now we turn to the features of the solution around a2 point where a
steady slate gets unstablized, which needs a computer to solve (5). For a=a,, it is obvious

from Fig, (5) that when r >r, (90°)=P( P+3+A—m4—.“+—n—))( P‘—l—ﬁ;—))ﬂ ~ 28,04,
) - 1y t 1y

C, becomes fully unstablized, meaning that at least one of the eigenvalues of each point at
C, has a positive real part. Then, if an initial value, say (0,1,0,1,0) is given, the solution
of (5) will be found to move finally to a limit cycle r,. Fig. 7 depicts frequency spectra
of g, and ¢, of ¢, with r=29.96. It can be seen that the basic frequency of ¢, is f,,
with the subharmonic frequency of L, and L, being 2f,, 4f,, - 2Kf, and f,, 3f,, -
(2K —1)f,, respectively both with K=12,.... It follows that ¢, is symmetrical: L,(t)=

L,(:+ ?2—) and L, (8)=—L1, (z+l;l) with the period of T,=1/f,.

Tracking z, in the direction of # increases reveals that its symmetry is damaged when
r=r,~33.3, Fig 8 illustrates the frequency spectrum of ¢, for r=33.35. Iis comparison
with Fig. 7 shows that, because of the damage of the symmetry, the subharmonic frequencies
of L, and L, will contain a whole multiple of f;, i. ¢., #f,, with n=1,2,3,.... When rzr,~
33.42, v, becomes unstable and comes into chaos (see Fig. 8). - After the periodic -solution
has disappeared, however, no intermitient chaocs or bifurcation happens. Therefore, it is
necessary to explain how 7, gets unstablized,
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Fig. 7. Periodic solutions for a=a, and r=29.96, (a} and (b) show the

frequency spectra of #,, and ., respectively.

124 ¥y R=263.36 a=a.

2
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Fig. 8 The frequency spectrum of ¢, for a=a. and r=33.35.

In fact, there is a chaos solution concucreatly with v, whose attractive domain is en-
larged as r increases. When r is relatively far from r, (90°), the solution with injtial value
around the origin will go into a chaos state. Fig. 9 shows the projection of Poincare cross-
section” of chaos and the 7, onto L, for r=32.8 and 33,35, As illustrated in this figure,
as r increases, r, gets closer and closer to chaos and at r=r,, the intense disturbance of chaos
results in “damage of symmetry” of the periodic solution, which, in the end, “collides”
with chaos to the full extent and is “swallowed™ by the latter at r==r,. At this time the
limit-cycle becomes a strange attractor without going through any bifurcation, which is
similar to the breaking of tori investigated by Franceschini and Tebaldil'™, In their case,

1} The Poincare cross-section is defined as 8= —~(R—&;).
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a slable torus collides with an unstable limit—cycle, the former goes through a “catastrophe”,
changing to chaos suddenly. Here ¢, meets with chaos and is swallowed, which is also
a ‘‘catastrophe™,

Now we shall track ¢, in the direction » decreases. It is found that for r<cry =25.3,
t, branches into a two-dimensional quasi-periodic torus ¢,, with basic frequencies f; and
£, Fig. 11a—b illustrates the phase trajectory and frequency spectrum of ¢, for r=25.274,
respectively, When r<rq, =25.18, 7, bifurcates into a three-dimensional quasi-periodic
torus ¢, with basic frequencies f,, 7, and f,. Fig. 1lc--d depicts frequency spectrum of 7,
and the Poincare section. Fig. 10 indicates the variations of j, and f, with r, but the case
of f,~0.94, being quite constant over the range of the parameters given, is not shown. As
seen from the figure, f, changes stowly, whereas £, varies very fast, and consequently f,,
f. and f, are three incommensurable frequencies. As shown in Fig. 10, over the interval
of r € [ry, re) for rp ~2513 and r 2515, f, is locked atf, /8, thatis, a locking
phase takes place. Hence there are only two independent frequencies /', and f, and a three-
dimensional torus is fixed at a two-dimensional torus y,, which is given in Fig. 1le.
When r continues to decrease, a three—dimensional torus is obtained once more, but f,
will go up instead of going down. When r<r,=25093, | is locked at f,/9 and f, at f,,
i. &, fo=f,=/,/9. In this case a periodic locking phase occurs. Fig. 11f is the Poincare
section of ¢, with I8 peints on it with f, =0.012 for r=25.09. When r<r =25086, 7,
comes into weak chaos, during which time the Poincare section can no longer show a closed
cycle, although the motions with f, and f, still domipate. Fig. 11g indicates the section
for r=25.0857.

If r keeps diminishing, the periodic locking phase and chaos emerge alternately, which
seems analogous to the locking phase of a system of seven-mode equations investigated by
Franceschini?®). Yet it will take more calculations to determine these cases and no further
discussion will be held in this study., When r <r 4~ 24.92, the chaos disappears. In this case
solutions of (5) with initial valves given stochastically will come to the steady interval of
C; in the long run.

s (a) an (b}
! R=2§3.36 a=a
R=25%.02 a=a. 510.0F
530.0
310.0F
330.0} N
’ -;-/'
' kg
o 118.0F a7
130.0F o e
o -
/ _.*/
, ~90.0F
- T70.0F _:l.-,“f ;-'

T !
-290.00
s
1 | — ' L I3
. -5.0 -2.0 10 3.0 60w

L 1 L
—57.0 -271.0 3.0 3.0 63.0 "o

Fig. 9. Poincare section for r=32.8 (a) and for r=33,35 (b). Cross
denotes periodie solutions. : ’
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25.10 25.13 25.20 25.25 r

’ .
Fig. 10. Curves showing the relation of £, and f; to r.

It should be noted that f, and f, in Fig. 10 are determined by performing spectrum
analysis of the points on the Poincare section. This is because an extremely large N is re-
quired to specify such a frequency as low as f, if the sampling points x(kA) with k=1,2, .-,
N of the solution x (1) of (5) are directly used to make spectral analysis. However, if the
point sequence x* (kA”), k=1,2,---, N' on the Poincare section is used for spectral analysis,
then a relatively small N° will include a longer—term set of samples and since the effect of
fo has been reduced, the low frequency like f, can be defined more accurately. A’ is the
time difference between two successive points on the Poincare section and varies slightly with
time. If the mean A" is used as the sampling interval for the analysis, then the frequency
obtained will have higher precision. For example, the frequency spectrum of ¢@,, (KA)
on the Poincare section for r =25.164 is shown in Fig. 11h, where f, =0.1246 and /,=0.044
are determined, and from Fig. llc f,=0.1221 and f,=0.0488 can be obtained, indicating
that the relative error of f, and f, are 2%, and 10%, respectively. This is due to the low
frequency determined inaccurately from Fig. 1lc. Franceschini employed the method to
treat the period-doubling of a high-dimensional torust*",

From the above it can be seen that, when a=a,, Eq.(5) shows a complicated coexistence
of many attractors. Fig. 12 displays the variations of attractors versus r schematically.
For the sake of intuition the intervals are not given in proportion, with the curve of critical
C, straightened.

VI. THE BIFURCATION PROPERTIES OF NONSTEADY-STATE SOLUTIONS OF EQ: (5 FOR

a>=da;

The properties of the solutions with different 2 are calculated for a=a, when the steady
states become unstable and described as follows.

iy if a=0436168 <u,, corresponding to A>f,, then R, >R, and C,; wil
never be stable as indicated in Section ITL. For r,>>r, =22.697, C,, becomes unstablized,
when the solutions with initial values given randomly exhibit intermittent chaos. Fig. 13a
depicts a one—dimensional return map on the Poincare section that clearly shows the proper—
ties of intermittent chaos of the solutionst®). Fig. 13b—c represents the variations of ¢,,
and ¢,, with time, showing the oscillation of the solutions alternately around C,_, C, and
C,., i. e, the motion of L, or L, is dominant alternatively). When this happens, there
occur mean flows alternately “with one and two vortices dominant as time goes on, In this
sense, the mean structure of the turbulent state is unsteady and, relatively speaking, L, is
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Fig. 11.  (a) and (b) show the phase trajectory and frequency spectrum for
r=25.274, respectively; (c) and (d) the frequency spectrum and
Poincare section for r=25.164, separately; (¢} is the frequency
spectrom for r=25.14; (f) the Poincare section for #=25.09; (g) the
Poincare section for r=25.0857; (h) the frequency spectrum on the
Poincare section for r=25.164.

r(0) o e (90%)

] oo Fe Yoy T fg, Ty n L]
oLl A, PR
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chaos+rp T Ty T, Tay T ™
chaos
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Fig. 12. A diagram showing the variation of attractors versus r, with the
straightened € being r.”'{x), i. e., x=x{r.). For r>r the points
at Cz corresponding to x>>x(r") are stable. The parameters used are:
FeAD)na2]1.55, r.(90°)28.04, rsas24.92, r, 25086, rom25.092,
rp7e25.13, r, 225,15, ro;~25.18, 7o,~25.30, r»333 and nm
33.42,

more active since C,, all can occur.  This is different from the S8 cases for a=a,, as indi-
cated in Sections II1 and 1V, where the number of tolls depends on initidl values and remains
steady after their formation. And here the case of a==0.44 illustrates that different numbers
of vortex structures show up alternately with time, regardiess of any initial value,

2) Tt can be seen from symmetry that some other inihal vaiux my cawse oxcillations ntar €y, Cor
k] . .
and Cy_, .
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As r grows, the mean time that the solution stays around each state is steadily reduced
with chaos being strengthened. A three—dimensional (forr,>329) and a two—dimensional
{for r,>>33.1) torus takes place and, when r>>34, periodic solutions occur. It follows
that, in the vicinity of r,=34, as r, decreases the solution goes through a Ruelle-Takens
bifurcation scenario, i. ¢, period—guasi-period— (locking phase)—chaos.

(a) ’ ' ¥ W)
Pl 25 R=193.75 a=0.4%

OF R=193.75 a=0.436168

. — .
30 ﬂo 920 120 7
¥a {1
544 R=105.75 a=-0.43
21
[

i B
@O

by
S 1 1 L
] 30 5 30 i ¢
Fig. 13. (a) a one-dimensional return map Fig. 14. The mean flows with
on the Poincare section: (b) @, (r); one and two vortices
{c) ®y, (1), for g=0,436168 and r,=27. occur  alternately.

Besides, the properties of the solution for #=1/,/ 8 are calculated and the result acquired
is analogous to the above.

iiy For a>>a,, calculation is performed of two points, one at a=0.52, closer to z,
and the other at a=1/,72 ~0.7071 farther from a,. In the former case the point where
C,, loses its stability is at r, =27.598, and after C;, being unstablized an initial value
selected stochastically will give a periodic solution, and further result reveals the similarity of
its bifurcation structure to that for a=a,, also with a coexistence of many attractors. If the
C, curve is substituted for C,, in Fig. 12, then the bifurcation for 4=0.52 can be described,
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only with the values of the parameters slightly changed.

a=1/4/2 is a widely-used valuet*® 13}, for which g is relatively small. According to the
description in Section 111, C,, is never steady and r, ==24.74 is the point at which C,, gets
unstable. For r,>r, , randomly—chosen initial values bring about chaos. Fig. 15 shows
the variations of £, and L, versus time forr, =27, Itis apparent that, as far as the move-
ment of the system is concerned, that of L, dominate while L, has only tiny amplitude move—
mmnent in the vicinity of Zero, which is quite different from that for a greater 8. As indicated
in Fig. 14b, a smaller 8 restricts the development of the mean flow with two vortices and
forces it to form a flow having one vortex only (see Fig. 14a). Hence for a smaller g, the
mean strocture of the turbulent state is steady, i. e., the subsystem L is dominant. Yet,
as r increases, L, plays a greater and greater role in the motion. When r=100, for
instance, it is hard to distinguish which of the Lorenz subsystems predominates in the chaos
motion.

(a) 6 O

;r“j ¥21] .
65 R=182.25 a=0,707 3l K=182.25 a=0.707

35J [ 11

5 - 9'(-
_25.l ~29

[ t
—55 ! - 494
& 7 g 0 3 €0 ) 120

Fig. 15, (a) the diagram of ¢,, {r}; (b) the diagram of @; (), for
e=1//7 and r,=27.

VI, CONCLUSIONS

By making proper spectrum truncation of the Galerkin series expansion of the two-
dimensional Benard convective equation, a simpler DPC Lorenz system is obtained, and
thereby the role of the aspect ratio § is discussed in the development of convection. The
results are:

(1) the steady state of the DPC system in the neighborhood of the first critical point
can be used to describe quite well how the convective rolls result. In particular for a=a,.
the system shows a closed cycle of solutions consisting of an unlimited number of steady
states, indicating that after a stationary laminar the flow gets unstable, and the formation
of rolls with two different wavenumbers will depend entirely on initial conditions. Hence
this can lend itself to the qualitative explanation of the experimental results as indicated in
Refs. [2] and [3].

(2) Asshown in the calculation of the bifurcation properties of nonsteady state solutions,
g is a key factor in determining the degree of the interaction between L, and L, For
8=4.. there coexist scveral attractors that may merge one into another. In addition, a
single attractor has a complex bifurcation structure, i. e. it may be marked by the Ruelle-
Takens line: periodic motion— quasi-periodic motion—»locking phase —chaos. When g is
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greater, intermittent chaos will occur after the steady state gets unstable, and the motions
with L, and L, in the main will happen alternately; when g is smaller and r, is not far
from r, , L, plays no role to a great extent and the motion of L, predominates, with the
bifurcation properties similar to those of the Lorenz system.

Finally, it should be pointed out that the DPC Lorenz system for z=a, has the same
form as the complex Lorenz equation derived from a two-level baroclinic unstable equation
or from a self-induced transparency equation in optics when atl parameters are realt*!),
This shows that such an equation can be induced from a variety of physical phenomena.
Of course, it wili take still more analyses and calculations to completely reveal the interest-
ing facts and contents of physics involved in such equations.

The authors are grateful to Prof. Hao Bolin and Prof. Qin Yuanxun for their valueable suggesiions
and comments and also to Mr. Zhong Wenyi for his help in calculations.

APPENDIX

Prove the following by an inductive method:

id;={((2!+1)mu,<2§— Dng), (2lmg, 287 3,1 =0,1,04y B=1,2,-}.

i=¢

Proof: Let the set be ), + consisting of the following segquences:

(ZIMo’Zk"nL k=1’2!“':K1 K=2 I=0’13‘“rL;L:32!

2+ Dimey (28— DY k=1,2, K, K2 1=0,1,-+L,L=1.
The other terms (0, 2n,), (2,,-20,) and (m,, 7} are easy to obtain from the first few excit—
ations of {m,, n,). Now all we have 1o do is to prove that A7, ;4. can be deduced from
Aj.r. Infact, we may use the sequence (2m,, 2kn,), k=1,2,-.. K, and (ZLm,, 21,); sequence
(2tm,, 2m), 1=0,1,--,L, and (2m,, 2kn,); sequence (2m,, 2kn,), k=1,2,....K, and (2L + )m,,
2n,); sequence (274U, #,), [=0,1,.-,L, and (Zm,, 2kn,) to get such sequences as
(Z(L + l)moa Zk-no): k:2=31"',K+ 1 s (2[’”03 Z(k + l)nn)’ I== 132:""L+1 3 ((2L +3)mn (Zk - 1)”0)1
k=23 K+1; (A+Dmy, 2(k+1m,), I=12,..,L 41, with the aid of the nonlinear term

> (Pj-gi)@epai. The other four modes (2L + Dmy.2n,), (0,2k+ Dny), (2L +3)my, 1,)

PHa=m
fhj=n

and (m,, (2k+1)n,) can be obiained respectively by use of the mode (m,, n,) and
(2L +Dm,, n,); (2m,, 2m) and (2m,, 2kn,); (2my,, 2n) and (2L 3 Dm,, #,); (0,27,) and
(g, (2k — 1)n,), respectively with the help of the linear terms Z (Pi—qi)erlais

Ptg=m

S

2 (Pit+aidpedas 2: (Pi+qidpsbai, er (Pi+aidppde;. Thus, Ags sy,
| P—gi=m Pra=un |P=—q|=m=
r+f=n {t—-F=n Et+F=h

can be derived from 47, and let K—>co and L—soo and we obtain Eq. (Al) according
to the inductive assumption given above.
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