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ABSTRACT

Starting from the equations of motion and continuity, a thecretical model is deduced in this paper for the
variation in wind velocity over water caused by abrupt changes in surface roughness and temperature when
air fows from land to water, based on the consideration that the turbulent exchange coefficient varies with
height and distance from the upwind edge. According to the computation of this model, the variation in wind
vefocity over water, as the drift of air is from land to water, occurs mainly in the first few kilometers from
the upwind edge. The wind velocity over water increases to a maximam when the air over iand is stable, it
tends to moderate when neutral condition is reached, and least variation is shown in unstable condition. And
when the air over land is unstable the wind velocity is less over water than over land in strong winds, but some-
what greater in light winds,

L INTRODUCTION

When air flow travels from land to water, or vice versa, the wind velocity is varied owing
to the abrupt changes in surface roughness and temperature. The study of the variation in
wind velocity over different underlying surfaces, especially over land-water surfaces, is not
only of theoretical importance but also of great practical sigrificance. For this very reason,
quite a number of studies (see Gandin, 1952; Zaisev, 1963; Nadejdina, 1964; Panofsky, 1964;
Townsend, 1965; Peterson, 1969, 1980; Nickerson, 1968; Taylor, 1969, 1970; Panchev, 1971;
Shir, 1972) have been made of the wind velocity variation caused by the abrupt change of
underlying surfaces over the past 30 vears, of which many are concerned with the wind
velocity variation when the drift of air is from land to water. Some of the studies have
represented the turbulent exchange coefficient & over water as a function z only, ignoring
its variation with distance from the upwind edge and have solved the partial differential
equation by Shwetz's (1949) method; some have, based on experimental data, considered the
variation of exchange coefficient %, with distance from the upwind edge or represented in-
directly the herizontal variation of % by the relationship between exchange coeflicient A
and wind velocity u but neglected the vertical velocity, i. e., the continuity equation; and
still some have calculated the contour change in a few specific cases by using the numerical
method for the motion, continuity, heat conduction and energy balance equations.

This paper shows that: since the variation in the velocity of airflow passing over differ-
ent underlying surfaces is mainly due to the changes in surface roughness and turbulent
exchange strength which is related to the thermal stratification and wind velocity, it is neces-
sary, in establishing a theoretical model of the airflow variation over a new underlying surface,
to consider the variations of exchange coefficient % with thermal stratification and wind
velocity and get the effects of surface roughness on wind velocity reflected in the boundary
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conditions or differential equation. In addition, since the pronounced horizontal variation
in the airflow velocity over a new underlying surface is inevitably accompanied by upward
and downward currents, the vertical velocity must be taken into account and the continuity
equation can never be ignored. From this point the basic equation of air motion and its
linearization will now be considered.

1I. BASIC EQUATION

If the water body is not very large, the difference in pressure over land and water is
negligible and the effects due to the earth’s rotation can be neglected. Thus, in a steady
case, the equations of motion and continuity over water can be writien as

du . u_ Bf. Bu

uEngz_az kaz), (l)
du B
PR P (2)

where x is the coordinate in the wind direction measured from the upwind edge; 2 the
vertical coordinate; y and w the horizontal velocity and vertical velocity over water; and &
the turbulent coefficient over water.

Letting 2, denote the surface roughness of water and u, the wind velocity over the
land wpwind of the water, the corresponding boundary conditions are
(3)

u=u, on x=0
u=90 on z—zn%.
U=u, a5 Z-ro0
Integrating Eq. (2) with respect to z and then substituting the value of w in Eq. {1},
we get the governing equation
du _Buf* du & ou
W o G ae= 2{e5Y).

In order to linearize differential equation (4), we have the approximate expression

u=u,l(f)’,, (5)

(1)

1
where p is a parameter relating to the thermodynamic stratification of the atmosphere and

the roughness length of the underlying surface. The second term on the left-hand of Eq. (4)
can be simplified as follows:

auiz‘au e ngzp—si(zif.;zpdz :& 2,-;i(l‘zl zi’h) P Au

ez na—z 24 ax o 2y zf ax p-}:T Zf :p-l—lu_a_x'
Then Eq. (4) becomes
1 ﬂzﬂ( 3_“) g
i5p%ax ~32\82)" (6)

The turbulent exchange coefficient 4 may be, in general, expressed by Lahetman for-
mula

2,28

= EH 2o Uz, 1=
A= )
where u,, denotes the wind velocity at height z,, ¢ the parameter relating to the thermo-
dynamic stratification, and x the Karman constant. Using expression (5), formula (7) can
be written as
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k=f(z)u, (8)
where
D -1 & A W -
flad= A=) (et =217 2 . {9)
Letting

U=y, U,=u, V=U-U,,
and using (8)., Eq. (6) becomes

3 4 av 2 BV
25 Tl —ae 5o —o'2t == F(2), (10)
where
gel7Pte o~ (1—e)?(z]—2()
2 ’ et (1 + P2zl
F(Z)Z—[ & U ~2(1— a)zagz :I (11)

If the profile of wind ve]ocnty over land is expressed by Yugin-Shwetz {(Gandin, 1955)
model, then

" Zpo

k

ety g B Bt/ (12)

Vit
- i “_
% cos| (2 h)‘/zk i+ 0], 224
where 2,, is the surface roughness; V", the velocity of geostrophic wind; A=2@sin ¢ (@ being
the angular velocity of the earth’s rotation, and ¢ the latitude of the observation site); «
the angle between the surface and geostrophic winds over land; and £ the height of the
surface boundary layer, which can be determined by

&y

;(—gh"l;h— =p’g (OOSCC — 8 a) )
oo

(k’ In=2- )1 ZoaS25h
U= ]

where &, is the coefficient of turbulent exchange at height z, over land. According to (7), it
may be expressed as

£oK Z80 2T W Uy,

(I—e&)’ (2:°—2nu")
where u,,, is the wind velocity at height =z, over Jand and g, the parameter related to the
thermodynamic stratification over land.

Substituting (12) into (11), we get

k=

/0, 2<Zoo
| %[(za DinE- 41] Zp<z<h
(13)
F(z) zkl ( 1—a~ — 2 2 —R) +2'V/ 2 k Vg —a(Zeap)
‘h' —-—‘a Z) "}1 ze

" {(az+ae—1)sinTa{z—hk) +P]- (1—a)cosla(z—h) + PN}, z=4
where
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The boundary conditions (3) now becomes
v=0 on x=¢
v=0 on z=zu}

(14)

u={ as z->os

1IT. THE GENERAL SOLUTION OF THE PROBLEM

By using the Laplace transform formula
7(s,2) = | ey (x,2)dx, (15)

it is easy to transform the partial differential equation (10} into an ordinary differentiat
equaticon

2
zzi’j’ +2(1—a}z iﬂi-— C'2osV “—F(z), (18)
and the boundary conditions (I14) are correspondingly transformed into
V=0 on z=2z,
. 17
F=0 as z—aoc} (an
The first condition in (14) has been used in carrying out Laplace-transform, and Eq.
(16) will satisfy itself antomatically.
Eq. (16} is a boundary-value problem of the non-homogeneous equation with homoge-
neous boundary conditions. To attack the equation we introduce the Green function &
(v,2) for satisfying the homogeneous equation

j; (2*G) Ad—‘i[Z(l—a)zG]—C“z”sG=0 (1%)
and the homogeneous boundary conditions
G=0 on z=z,
=0 as z—>oo}' (19)
Eg. (18) is the conjugate equation of homogeneous eguation
‘év+2(1— ) ':ii—C‘z P =0, (20)

Muttiplying (16) by G and (18) by ¥, subtracting the latter from the former, integra—
ting it from 2=z, to z=o0, and replacing the independent variable z with v, we obtain

after some simple calculus
dG - dV dG
[Gyd —V(2ayG+y )1

-V ( 209G+ E{B,T)

’ Gv
_¥=20 ¥=r4yq

1
_?Lu FGdy. (21)

Now, assume that G (v, z) is continuous throughout the interval (z, < v<<oo) and dGjd 7
has a jump at y=gz with its degree 1/z?, namely,

[G()’,Z)]y=.-+,“[G(yyz)]ya_,,:ﬂ, (22)
dG™  _ [dGT 1
[a-w e, = @)

Besides, ¥ is continuous throughout the interval (z,<<2<Cco), having derivatives no less
than the second order and satisfying homogeneous conditions {17). Thus we obtain
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V=H: F(3)G(y,2)dy. (24)

Mow we have come to work out the expression of G'{y,2) from the characters of the
Green function stated above. Replacing the independent variable 7 with v, Eq. (19) can
be written as

G dG ; :
22 2(1 =+ {2a—C'sa* )G =0. 25
ydyzﬂ-(+a)ydy (2a—C'sx*?)G =0 {25}
This is the Bessel equation, its two solutions being
2a+1 22+l
v~ 2z [(Y)and y~ 2 K, (Y),
where

poa=1 vy Cvisy®

2a I (26)

I(Y) is the Bessel function of pure argument, and K (¥) the modified Bessel function of
the second kind.
According to the characters of the Green function, we may assume

2a+1 Za+1
afz)y” 2 LV 40,y T2 K (Y), n<y<2

G(y’z):{ 2a+1 2a+1 (27}
al)y” 2 L) +b(a)y 7 7 K, (¥), z2Ky<{oe

Having determined the integral constants g,, &, and a,, b, from conditions (20}, (22) and
(23), we obtain the expression of G as follows:

za—1 g+l

2z 2y F v{Z,¥)y m<ysz
Glysz2) :{ 2a—1 2a+1 (28

b2z yT 2 w(Y,Z), z<y<oo

where
Vg = _Kv_(_gﬁnv(znl-;%(?&;f, (z) K, (] (29)
z_:ﬂ_s-z“’zﬂzgv’?zg_ (30)
a a

Thus, from Eq. (24), the soiution of Eq. (10} can be writien as

le—lrer _Zatl —
P(s,e)=2z 2 [] Yyt F(9)® (s ve2)dy

.4 Fgg

o 2a+1
Ty R 5IBs i, (31
where
P8y ys2) ';*V—(i——,y)
(32)
‘—ﬁ:(s, 3’!2) =_Iﬂ‘}%gl

%i(3,y,2){j=12) in (31) may be considered as the Laplace transform of function
pilxsy,2). According to the jnversion formula of the Laplace transform, the original
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function may be expressed as

T4 oo
@iy vs2) ,_J_E e P (s, y,2)ds. (33)

2
T

MNow we have come to the inversion problem of @;(s, v, 2)expressed by (33), viz, the
determination of the criginal function @;(x,y,2) of @;(s,v,2). In order to get a one-
value solution we make a cut along the negative real axis. It is proved that &; are regular
functions in the whole complex plane except at s =0. Thus, as shown in Fig. 1, we may add
an integral line o (KA) on the contour AB...HK, and regard ABC and GHK of the contour
as infinitely distant. and the radivs of circle DEF as infinitely small,

B i ~,
@ _‘6\
D Q
X c . X
G F E
H | - K

Fig. I, Configuration of integral contour.

Since there are no single points within the contour, we may transform the integral path
on the right side of (33) into AB...CK. According to Cauchy's theorem, the integral of
regular function ¢**@,(s,y,z) along this closed contour is equal to zero.

Now, let us consider the case of the integral on different sections of the contour in Fig.1
(x>0} as the radius @ approaches to co and the radius p of the small circle approaches
o 0.

When variable z is large, [ {2) and K {z) can be expressed by the asymptotic ex-
pansions

L@ e, K@~ (30

Now, it is easy to prove that p;, just like ¢—c¥~<, will approach to O when ]s|->oc, and
therefore the integrals along arcs BC and GH and along lines AB and HK will all approach
to 0 with g—co when x—0.

When > is small, [,{z) and K,(z} may be represented by the approximate expressions

—~ 27
S e

R

(35)
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where [ (n) is the gamma function.

Placing s=pe'? and changing the rectangular coordinates into polar coordinates, it

is found that the integral along the small circle DEF is Af; (j=1,2) when its radius becomes
infinitely small and that

2a—1 Z2eg—1
M=y "'~ 25" ) (2a~ 1}y 2 z 2 }

\

(36)
2a—1 2g—1
M= (2" =A%)/ (2a~1)y" 2 =z 2

Mow, let us consider the integral along lines CD and FG
0 @
j e*“@;ids and J e @ds,
- o
As CD and FG are assumed infinitely to approach to the negative real axis OX', we

can put s=e*r?, _8_=e*%r, with the argument of s being+mx, CD above OX'and the
argument being —g, FG below OX°, Thus, the sum of integrals along CD and FG is

n —_— _
ﬁljﬂz—iﬂ_f"‘if(s,y’z)ds +§3%ﬁ§0 e*Pi{s,y,2)ds

=i.j LB yime —LF ]y Yrdr.
oy e
Finally, when @—>oc the integral along line KA is
TR " F e .
fim -1 K 2"¢;(s,y.2)ds=*-1—:g e pi(s,y,2)ds=gi(s,3,2) .
e 28 Yo—iw 2ai Jo—ies
Hence the integral along the contour AB..KA is
. 1 — ]. - —rix
im- 2 - "G ds=M; *i .
:;i_:g Dot [AB"'KAE Pi(s,ys2)ds :+ﬂ_:. ne
X [P dvizir—[®ilyimmir)rdr + i (2 ¥,2) =0.
It follows that
pr(es992) = = My= e 0B 1 i LB o (s7)

By use of the relationships for the Bessel function

1 .
K (Ziy) =~ 5eT 27 IN, () 2l (y) 1}

. (38)
L(£iy) =¥ 27 (y)
where J,(y) is the Bessel function and N, (y) the Neumann function, we get
pa{xyy,2)=— M.~ %Le"”'@(y,z,r)dr
1{* e }’ (39)
rlx,y.2)=—M, -—EL e~ D (y,z,r)dr

where

Pl b221) :M%-)NU (—Q%i-)#N" (%)I’(ﬁzi)]
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[7. €228 v, (S0 ) v, (G oty
42 (Er%’ii,)],
\ o

According to (31) we obtain the original function of ¥ (s,2)

(40)

- 2a~1f rr 2a+1 o 2a+1
Vix,2) =2 2 ﬂn ¥ F(v)¢1(x,y,2)dy+j ¥ _"'7F(y)wg(x,yﬂ)dy]-(ﬂ)
Thus :
ul(xy2) =Lui(2) +V (x,2) ],
or
ulx,z) _ Vix,2) 1
i ARRS ool (42

1v. THE POSSIBLE MAXIMUM VELOCITY OF AN AIRFLOW PASSING OVER WATER

According to the Laplace-transform formula, a larger x is corresponding to a smaller
s, and hence 50 as x—>co. Inview of the character of function K, {v), the expression
of F{z) and the values of p,e and g, which might appear in reality, it is seen by careful

(oo 2a+1
analysis that the principal value of integral ‘ ¥z Fiy)@.(s,v,2)dy Is deter-
mined by the value of the integral from z to A (H is a limited height), and that the

‘/ sy% in function K, (C‘/ sy* ) is practically very small when s is infinites-

imal. Thus, the Bessel functions K {2z} and I, (2} can be represented by the approximate
expression (35) when x is very large, i. €., 5 is very small. In this case, after some calculus,

Eg. (31) can be written as
Pie,n =g gl [ FOY O —mym ) Koty 2)dy

variable ——

+ @ =21 [ F )y K, )y, (43)
where
T - l 1 @= 1
Xl(s,z)=7i——b(z — 2 = z T
18- T=1 1 2 Awm| 2@ 1
X, (s.3)= 1 —b{¥ -2 )_S'_—U —bA"y T
=I"(1_v) AC< 1y
b 1'"(1+v)(za)
By use of the corresponding relationship of the Laplace-transformation
"—0 1 1 -—0 —' 1 s D - ‘xL—
’ T A=’ s ri-z)"
we get at once the original functions of X ;(s z) (j=1,2)
1 _ ra-L_ gla— 27291 e K
Xi{xy2)=1-b(z )[‘(1 ») —b'z FM(l-2v)} o
—1_ 28=1 _ 2R=] x R 2Tl zﬂ—1*5£zrv__ ’
X (xs9)=1-0b(y z )I"(,l ) b ¥ =)
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and hence the original function of ¥ {s,2) is

Viod) =g Xiwa) | P -2ty edy

T L)) LF(y}y"”‘X,(x,y)dy]. (43)
Since x, = x,=1 as x—>co, the possible maximum velocity u (o, z) of an airflow passing
over water is determined by

Vix,z) = 2';_ TU;FM (™ -2y ) dy (2 - 2T [?F {3y~ dy ]

(46)

V. THE RESULTS OF COMPUTATION

It is well-known that there are remarkable changes in the thermal stratification of the
air over land as a result of the great daily change in the temperature near the ground
surface. During the daytime heating of ground surface, the air over land is, in general, unstable
and g,<0; during nighttime when the surface is cooled, the air over land is stable and ¢, >0.
Because of the greatly reduced range of temperature over water surface, the diurnal change of
air stability over water is not so marked and g~0. In addition, the roughness z, of water
surface is 2 function of wind velocity (Yan, 1982}, and the stronger the wind, the larger the
roughness. On this account, we have, by using formula (42), computed the variations of wind
velocity with distance x when an airflow moves over water for different &,, 2, and z,, (taking
=30, =24, 1=30 m, and p=0.09 ag z,=0.01 cm, p=0.13 as z, =0.6 cm). The results
are shown in Figs. 2—8.

It is seen from Figs. 2 and 3 that, in neutral equilibrium (g, =0), the increase in airflow
velocity over water occurs mainly in the 2—3 km from the upwind edge. It gradually be-
comes moderate with increased distance and the change is imperceptible beyond 10 km. It
is also found that the smaller the distance to the water surface and the weaker the wind
(thus the smaller the roughness z,), the steeper the increase in wind velocity over water. When
the roughness z,, of the ground surface is 3 cm, the wind velocity at x=10 km and z=1m
may increase by more than 50% in light winds (2,<C0.01 ¢m) over water than over land, but
only by 14% in strong winds (z,>0.8 cm); at the height of 10 m above the water surface, the
increase in wind velocity is less than 159 even in light winds. With z,,=9% cm, the wind
velocity at 1 m above the water surface may increase by more than 80%; in light winds, and
by about 40% in strong winds. These figures are in good agreement with the observations
of ours in the upper basin of the Changjiang River, where, with the surface roughness z,, of
the land surface being about 3 cm on the average, the increasing variatfon in wind velocity is
found mainly in the first two kilometers of the distance covered by the airflow over water, and
the stationary wind velocity at | m above the water surface may increase by 55—60%, over land
in light winds. .

Fig. 4 shows that, when the thermal stratification is stable over land, both the increase
in wind velocity and the distance of its variation over walter are much greater than at neutral
stability. For z,,=23 cm, the wind velocity over water at x=10 km and z=1 m may in-
crease 3.8 times as much as that over land, and even at 10 m above the water surface the wind
velocity is still 60-90%, preater than that over land. The increment has a larger value in
strong winds (large z,) than in light winds (small z)), for in high winds the strong turbulent
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exchange is more favourable to the transfer of momentum of the fast-moving air from an
upper layer to a lower layer, thus making the effect of increasing the wind velocity at a distance
above the water surface exceed the effect of decreasing the wind velocity due to the increase
of water surface roughness. All the above calculations also coincide with the observations

made at Dazong Lake near Xinghua conuty of Jinagsu Province in Octcber, 1982.

20 uu g
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144
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Y 0m
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e %000 8000 70000 o 02 o4 & o8
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Fig. 2. Variation of wind velocity over water Fig. 3. Variation of wind velocity over water

with distance x from the upwind edge
when £,=0, z,=0.0l cm and z,,=3
o,

x{m)

Fig. 4, Variation of wind velocity over water

with distance » from the upwind edge
when g,=04.
Solid lines—z,=0.01 em, z,,=3 cm;
Dashed lines— 2z,=0.6 cm, z,,=3 cm.
The signs dot and asterisk denote the
observational data at 1 and 2m above
the water surface of Dezong Lake re-
spectively when £=0.5, z,=0.66 cm,
Zee=3.2 cm.
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Fig. 5.
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1__
Variation of wind velocity over water
with distance x from the upwind edge
when z,=--0.1.

Curves 1, 2, 3, and 4 represent the
cases for z being 1, 2, 5 and 10 m,
Tespectively.

It is shown in Fig. 5 that, when the thermal stratification over land is unstable, in the case
of light winds (z, =0.01 cm)over a water surface whose small roughness leads to an increase in
wind velocity exceeding the disadvantageous retarding effect of the thermal stratification, the
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10%

velocity of an airflow moving over water also increases somewhat, but the distance of wind
variation is much smaller than that in neutral stability, mainly within 1—2 km. With z,=3
cm and x =10 km, the wind velocity may be 259% greater over water than over land at the height

of 1 m, and only 5%, greater at 10 m.

)

x =500 m
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— — — x=10000 1

Fi

semi=logarithmic system of coordinates)
(@) 2,=0.01 cm, ze,=3 em; (b) =z,=0.6 cm, z,=3 cm,

e. 6. Vertical variation of wind velocity over water when e,=0 (in

In strong winds (z, =0.6 cm), however, the velocity of
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Fig. 7. Vertical variation of wind velocity over Fig. 8. As in Fig. 7, except for z,=—0.1,
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airflow passing over water decreases slowly because the effect of thermal stratification exceeds
that of water surface roughness. With z,,=3cm and x= 10 km, the wind velocity at heights
of 2---10 m may decrease by 3—4 % than that over land, but at the height of I m it still increases
somewhat with x in the distance of 500 m and becomes much smaller than over land after
covering a distance of 53 km.

Figs. 6—8 show that the effect of water bodies on wind velocity decreases sharply with
heights above the water surface, the most pronounced variation occurring below the level of
10—20 m. Tt is found that the more stable the atmosphere remains and the [arther the airflow
has moved over waier, the greater the water effect will become.
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