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ABSTRACT

In this paper, an equation of the vertical velocity at the top of PBL is derived by use of a PBL mode! which
is based on an analytic and actual form of X. Results show that the vertical velocity is a function of geostrophic
vorticity, geostrophic wind speed, Coriolis parameter and the roughness of the ground, thus improving Charney-
Eliassen’s formula. The order of magnitude of the vertical velocity computed from our equation is in agreement
with that from the latter, but more faclors affecting the vertical velocity are inclyded. '

L. INTRODUCTION

The vertical velocity at the top of PBL (placetary boundary layer) is an important
parameter in large-scale and mesoscale meteorology. The so-called Ekman pumping process
has often been taken into account in many numerical models in which the vertical velocity
at the top of PBL must be known. So far, the widely used Charney—Eliassen formula {Char~
ney and Eliassen, 1949) based on the Ekman model has the form

X
w=,\/éf§g, (1)

where K is the constani eddy transfer coefficient, f the Coriolis parameter and ¢, the
geostrophic vorticity. According to the concept of modern micrometeorology, the Ekman
solution is not accurate enough because of the constant X, especially in the lower boundary
layer where the wind speeds in solutions of the Ekman mode! are much less than the actyal
winds. Hence the vertical velocity in Eq. (1), derived from the divergence of the Ekman
velocity field, is not accurate enough, either. Furthermore, there has been lack of objective
methods to determine the constant X in Eq. (1), which is, in turn, often determined by
experience.  Physically, however, K should depend on the wind speed and ‘the vertical shear,
or the profile of the wind, according 1o turbnlence theory.

From the viewpoint of the similarity theory of PBL, the wind velocity in the neutral
PBL should be a function of geostrophic wind speed (, the roughness of ground z, and
the Coriolis parameter f, besides the height z. Obviously, the vertica! velocity at the top  of
PBL should also be a function of G, f and z,, However, Eq. (1) can not completely re-
flect the roles of these three parameters in determining the vertical velocity, ie., the factors
considered in C-E formula are not perfect, thus decreasing its accuracy.

In modern parameterization models of boundary layer (Bhumralkar, 1975; Tennekes,

1973), the boundary layer Rossby number Ro =£ (in order to distinguish it from the
b fzo
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large-scale Rossby number Ro, here f% is called as boundary layer Rossby number

Ro, instead of Rossby number Ro referred to in many literatures on boundary layer me-
teorology) has been used to determine the turbulent fluxes in the PBL, ie,, G, f and z, are
used as independent variables in parameterization. The wind velocities in the neutral PBL
are also determined by these parameters and height. &, f are the model variables in large-
scale models. 2z, is a micrometeorological parameter, but its values are usually estimated
from the characteristics of the ground in the modern models of PBL parameterization. There-
fore, 2z, can be used in large-scale models. For example, Dubov (1977) took z,=1 m
for forest, 5 cm for plain, 4 cm for desert, etc. It is expected that w at the top of PBL
can also be parameterized by G, f and z, in order that it may be computed from the
model variables in large-scale models.

In a large-scale model, it is not convenient Lo apply the complicated modern boundary-
layer numerical model to compute the precise wind distribution and w in a given boundary
layer. The purpose of this paper is to find out the parameterized equation of w from a
PBL model, in which an actual and analytic K profile is used. In this parameterized equation,
the influences of &, f and z, can be shown and applied to large- or meso-scale models.
The main method here is the same one as used by Charney and Eliassen, by which
reasonable results can be obtained though they are not very strict theoretically.

II. THE PBL MODEL

The solution of PBL equation depends on the form of K. Based on the turbuience
theory, Blackadar (1962) derived an expression for X, from which the solutions obtained
were in agreement with observations. However, by means of his K, the FPBI. equations
can only be solved numerically. Nieuwstadt {1983) found that the following dimensionless
form of K closely fitted in with the neutral K distribution derived from Wyngaard’s sec—
ond-order closure model (Wyngaard et al., 1974) and approached the real distribution of K,
namely,

K=cn(l—n)*, (2)

=
where K :z{‘gh_* (hereinafter the dimensional variables are denoted by the superscript
&

asterisk) is the dimensionless eddy transfer coefficient; 5 the dimensionless height
zlb
h*’
imately equal to 0.2. In this paper, ‘we shall apply K in Eq. (?) to finding out the
wind profile in PBL and, finally, to givng the vertical velocity.

If all the velocities are scaled by u2, and K* and z* are replaced by their dimensionless
values, then the dimensionless motion equations can be written as:

d pdu | fi*

A* the height of boundary layer; u¥ the friction velocity; ¢ a constant and approx-

“d;" dn ux (v—ve) =0, (3)
d. h*
kL ) =0, (4)

where u and v are dimensionless wind components; u, and v,, dimensionless geostro-
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phic wind components. By defining the complex velocities i =u +iv and W, =u, +ivg,
the motion equations (3) and (4} become

d AW RV fae

E,T”K dn i uﬁ ——:HWg . {5}
The upper boundary (=1} condition is
W=H g, {(6)

*
and the lower boundary (p=1,, 1,= i—;i is dimensionless roughness) condition is

W=0 . ("
For the lower boundary condition (7), p=1y, instead of 5=0 is chosen due to the fact
that the solution of Eq. (5) is divergent at #=0 when the X in Eq. (2) is used. In fact,
from Eq. (2), when  is small, X is proportional to y. In this case, it is well known in
micrometeorology that wind velocity should be a linear function of lngp; in other words.
wind can not be defined with =0, and the wind speed should vanish at g,. Consequently,
our Eq. (5) has no solution at y=0. Then, this model implicitly includes the existence of
roughness which is naturally introduced in the model. For the upper boundary condition
{6), taking =1 to be the upper boundary is closer to the reality than taking p—>co as in
the Ekman model and the former is more convenient to be used in large-scale models.
We define the frictionally induced velocity J¥7 2 =" —J¥,, then the equation for /¢
becomes

d AW R
;fﬂ K dn ! u¥ 0 (8)
The boundary conditions are:
We=p where n=1, {9}
and
WeE=—-H, where 7= 7 {10}
Egq. (8) may be written as
Lrras — 78 *[1" 5
d* W 1—35 dW R i —0. an

di Tal-m) dy 7 en(T—n)ud
Eq. {11} is the Fuchs-type equation with regular singularities 0, 1 and co which can be solved
in series form by standard method. The solution of Eq. (l1) satisfying condition (9) is

We=C{l1—n)""Fla+l,a—1;2a;1—1n), {12)
. . 1 )
where C is a constant, 5 (a,bsc;x) the hypergeometric series, =y +?J1+45Q
fh* .-
and = From condition (10), we have
*

= W 3
¢ (1—-m)""Fla+1l,a~1;2e;1—n) (1%)

and thus we get the solution of Eq. (5)

_ (1-m*'Flatlyg—1;2a3l—1)
W"W’I}* (1) " Flatl,a—1;2as1—n,) ] .

(14)




236 ADVANCES IN ATMOSPHERIC SCIENCES Yol, 4

Eq. (14) is the herizontal wind distribution that we need to find out the vertical velocity,
and can be applied in the region #>>#,. But no solution can be found at =0 because
the hypergeometric series does not converge there (for c=g+b, F(asbscyx)does not
converge at x=1}. :

[Il. THE VERTICAL VELOCITY

The wind distribution in Eq. {14} is used to find out the vertical velocity, In general,
we should utilize the solution of the boundary layer equation under the horizontally inhomo-
geneous condition to compute the vertical velocity just as Wu {1984) did. However, on
account of the complexity of K form in this paper, we shall simply use Eq. (14), i.e., the
solution of the motion equation without the horizontal advection terms, to compute the
vertical velocity as Charney and Eliassen (1949) did.

For a large-scale motion, the horizontal velocity should be nondimensionalized by the
velocity scale U/ in such motion. If the horizontal length scale in a large-scale motion is
L, the vertical velocity scale in the boundary layeris [JA*/L according to Pedlosky (1979).
Consequently, the dimensionless contiunity equation has the form

du v Dw
—6—5—5—5'4—9—”— 0. {15}
Integraiing Eq. (15) yields the vertical velocity at the top of boundary layer as follows
v idu  dv
==\ {5, +5. Jdn. 16
w= =, (o toy )i (16)

In Eq. (14), the dimensional velocities are nondimensionalized by the friction velocity
u¥. If all the dimensionless velocities in Eq. (14) are changed to be nondimensionalized
by J, then Eq. (14) will not be altered. Assume all the velocities in Eq. (14) to be non-
dimensionalized by U, and substitute Eq. (14) into Eq. (16). Then the vertical velocity

= =] (R + splwW) o= ~ moRe | Wiy Ztm | wa
W —'L“(axRe i ay mi’) dn= dx eﬂ:n 7 Dy - Ty g
a [ an

= - = - lms—\ Wd 17

ReaxLqun lmayj,;cl b {17}

can be yielded. Substituting Eq. (14) into {17) and using the formula
i

{(lwn)”"F(a—H,a71;2a;l—n)dr]:- —E(l—n)"F(a,a"l;Zagl—n) (18)

to calculate the integral in Eq. (7). we obtain
i
SL (l—n)"“’F(a+1,a-—l;2a;l*n)dryi-‘;F(cx,a-hZa;l-—r,r.,). (19)
K

Usually n,<10-%; thus 1—#n,—1. From the properties (Abramowitz and Stegun,
1965) of the hypergeometric series F(a,a—132a31—n,} in which c=e+&+1 for
F(asbsc;x), it is accurate enongh to retain the first term in the expansion. Con-
sequently,

1 r I'{2a)
L (1—n)"‘lF(a-H,awl;zagl—q)dr}i% m*)“f(-fz—)_'_l—)"=q—,l£,&], (20)
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where I'(x} is the Gamma fuaction, The value of the series in the denominator of Eq. (14)
can be calculated by the following approximate equation (Whittaker and Watson, 1927)

T
Fla,bsey%)= F((:)—Il:'?l);) In—— ,Where c=a+b and x—1 . (21)
Then Eq. (17} turns into
/ _T'{2a)
o 2 ~ al*(a) N
!J."—(_RE'a Imay)ﬂfg(1~ r@)—“‘_— 1

e+ T{a—1)

[ —Re gyt a1+ 1L )]
(he f s )]

J o
——~(—Re E—]mé';)(WQQJ)s (22)
where

cu*

; 1 ;
=1~ Qln, "L~ it 2

*
In Eq. (15), the vertical velocity is scaled by %U , i.e., A* has been treated as a

constant. Taking the boundary layer height £* to be a constant is a method usually
used in large-scale models (Bhumralkar, 1976). Therefore #* in Eq. (23) deos not change
with the horizontal coordinate. We assume that J#, in Eq. (22) depends on the horizontal
coordinate, and that uj is independent of x and y when I ,p is differentiated with respect
to x and y. This treatment is similar to Charney-Eliassen’s work, in which /", depends
on x and y but K is independent of the horizontal coordinate. It is, of course, not theo-
retically strict and introduces some approximations into the results, Thus Eq. (22} becomes

w= augRew +— yI me — aug!mzp "?'Rezp
cu
=fsImp= —; fh*l.:’l!h (24)

Transforming Eq. (24) into a dimensional form and omitting the asterisk superscripts, we
obtain

¢ 0k (25)
fln z0
Because 44 in Eq. (25) is not the variable in large-scale models, we try to express it in terms

of the latter. In Eq. (25), there is an identity cuy=ci3G. Noting that ¢=02 is
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only an estimated value, thus we can also substitute the estimated value of u4/F into Eq.
(25) 10 calculate w. The quantity uy/G has been investigated in detail in the modern PBL
parameterization iechnique. Here we use its typical value as its estimated value. In a
large-scale motion, Ro,=10* is a value typical of Ro,. In this case, /&G may take a value
0.036 (Tenneks, 1973), and then Eq. (25) may be written as

4.007G

= -

iy é— .
hoo (26)
fInZn

Formula (26) is our final result, showing that w is proportional to geostrophic vorticity, in
agreement with Eq. (I). Eq. (26} also shows the effects of G, f and 2, on the vertical
velocity: the larger the & and z, are taken, the larger the 1 will be, which is reasonable.
The effect of K on the w is expressed from the & in the numerator. Eg. (26) can be used
in large-scale models to parameterize the vertical velocity at the top of the PBL.

As an application, we calculate w in the following geopotential field in a cyclone (Wu
and Blumen, 1982):

2

—L,2
1 ar
= =(1=yr)e @)

where ¢ is the dimensionless geopotentialdeviation, r the dimensionless radius, and the
horizontal length scale L=10° km. Assuming Ro=03, z,=10 cm, #h=1 km, then
U=30 mfs if f=10"%"" is taken. From Eq. (26), w=046 cm/s at r=1. II we take
K =35 m¥s'", the C-E formula (1) gives w==0.3% c¢m/s. In this example, our result is slightly
larger than C-E’s value. If we choose Z,= | cm, then w=0.37 cm/s is obtained, i. e, it is
slightly smaller than C—E's value. In general, the orders of magnitude are the same as the
latter. The common shortcoming of C-E’s work and our work is that the wind profiles
are calculated by menas of horizontally homogeneous PBL models, but the vertical velocities
are calculated in the case of horizontally inhomogeneous conditions. Both have some
approximations. However, our result can give the effects of G and z, and include more
governing factors, so that il is an improvement to C-E's formula,

V. CONCLUDING REMARKS

In this paper, the parameierized expression of vertical velocity at the top of PBL has
been derived on the basis of the PBL model in which the actual height-dependent eddy
coefficient X is adopted. Tt expresses w as a function of £;,G,f,2, and h and can be
used in large-scale models. The expression derived above is able to compute the vertical
velocity under various cases of the geostrophic wind, geostrophic vorticity, Coriolis parame~
ter and roughness. The order of magnitude for our computations is in agreement with that
of Charney-Eliassen’s classical formula. Although our result improves the classical result of
Charney and Eliassen, it still has some approximate treatments, and some constant values
are not very accurate. The calcelation of accurate vertical velocity should adopt the modern

I
1) According to Holton’s work (1979), ”z\/sz in Ekman model, then X=5 m¥%s if i=] km and f=
N

10~4 s~ are taken,
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numerical model of PBL. It is, however, too complicated to be used in large-scalc models.
Therefore our result has its practical significance.

The other shortcoming in this paper is that the K expression only in ncutral condi-
tion is used. It is necessary to consider the effects of thermal stability, and to find out the
K expressions for different kinds of stability in order that accurate PBL model can be built.
At the same time, the effects of topopraphy should also be taken into account. All of
these need to be further investigated.
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