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ABSTRACT

In this paper, a numerical experiment of the motion in the PBL (planctary boundary laver) is perform-
ed with geostrophic momentum approximation, in which a nonlinear eddy transfer coefficient is used. Some
results are obtained for the boundary layer winds in cyclone-anticyclone and trough-ridge systems. This treat-
ment improves W-B's work. The effects of geestrophic wind tendency and the advection of the geostrophic
wind on the winds in the PBL are also discussed,

1. INTRODUCTION

The accurale simulation and forecasting of the winds in the PBL require 2 nonsteady three-
dimensional numerical model, and their operation needs not only numerous calculations, but
also needs three-dimensional initial and boundary conditions for which special observations
have to be made. At present, this kind of work is performed only occasionally apart from some
special experiments and research. In order to predict the wind field of the PBL on a large
scale, diagnostic analysis was usually applied (Hadeen et al., 1972) ; i.e., by means of the geo-
strophic winds (or the winds at the top of the PBL) at grid points predicted by large or meso-
scale models, the winds in the PBL were obtained from a steady and horizontally homogeneous
PBL model. This procedure did not consider the advection and local variation in the PBL,
so it was not rigorous. 'Wu and Blumen (1982) investigated the winds in the PBL by utilizing
the geostrophic momentum approximation; the primary nonlinear nonsteady motion equations
of the PBL were linearized, and the three-dimensional equations became one dimensional.
This treatment not only considers the local and advection varjations, but also does not need to
solve the complicated three-dimensional equations, and the windsg in the PBL can be calculated
so long as the geostrophic wind, its spatial distribution and tempora! tendency are known.
The latter two can be predicted from a large-scale model. OQbviously, this treatment has im-
proved the computation of the wind distribution in the PBL. Furthermore, Wu (1985) investi-
gated the effects of orography on the winds in the PBL by means of the geostrophic momentum
approximation. In order (o find the analytic solution, the constant X of classical Ekman
theory was used in this work, hence the intrinsic defects of the Ekman model were also intro-
duced in the results;i.e., the model results of the wind speeds in the lower PBL were too low to
coincide with observations. This can be seen as follows: in the surface layer, the turbulent

shear stress 1=K %K should be constant according to micrometeorological concept, K is
P - =
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proportional to the height in this layer, and consequently, 5?/ must be large enough near
z

the surface because K is small there. If X =constant is taken, then its value should be an ap-

propriale medium magnitude in order that it can stand for the X in all the PBL ; therefore, dv.

dz
becomes small near the surface and the wind speed there will be too low, Furthermore. if K=
constant is taken, then —dal will be equal to a constant in the surface layer. This results in
2

wind speed being a linear function of height, which contradicts the logarithmic distribution of
wind speed as is known. For example, we use Wu and Blumen’s Eq. (57} to calculate the wind
speed n the PBL at r= 1000 km in the ¢yclone represented by their Eq. (56) (Wu and Blumen.
1982). There the geostrophic wind speed 1s 20,44 mjs, if K=10 m?/s is taken, and as a
result. a speed of 0.34 m/s is obtained at 6 m height and 0.65 m/s at 16 m in the cyclone,
Obvicusly, these results do not coincide with observations (in reality the wind speed at 10 m
is usually about half of the speed at the top of the PBL). From the viewpoint of application,
Wu and Blumen's work could be improved.

In this paper, we use the geosirophic momenium approximation to treat the winds in
the PBL, but the K expression from turbulent mixing length theory is used to calculate the
friction terms in the PBL equations. This treatment retains the advantages of the geostrophic
momentum approximation, but the more realistic transfer coefficient, compared with W-B's
model, results in more realistic wind speed values. The eddy friction force is nonlinear because
of the &, so that only numerical solutions can be ohtained. However, the procedure for solving
the equations is not complicated using our method.

II. GOYERNING EQUATIONS AND THEIR NUMERICAL INTEGRATION

According to the theory of geostrophic momentum approximation {Hoskins, 1975). the
wind vector ¥ 4 in the individual variation term in the motion equation can be substituted by
the geostrophic wind vector V , when the inertia term is much smaller than the Coriclis terms
in the moiion equation {usually the large scale motion in medium and high latitudes is satisfied).
When the friction force is neglected (at the top of the PBL), we have:

g g i
dt fo—fve (1)

_Uvye duy = fy, — (
; fug— fu, (2)

where . © are the components of the wind vector and ug, v, the geostrophic wind components,
either f is the Coriolis parameter, or

= Al dvﬂl.;
u= f d THq (3)
1 dug :
= fod +ug, {4)
where
,di=,a_*u.a.+v,a_ (‘5)
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Here we have neglected the small vertical advection terms. In Eqgs. {3} and (4), the advected
winds are substituted by the geostrophic winds and the advecting winds are still the original
ones, 1.e., the sum of the geostrophic winds and geostrophic departures. The winds in local
variation terms are also substituted by the geostrophic winds. Equations (3) and (4) can be
written  as:

_ dvg Z‘)ug ) )
um (e a0 i)y, (6)
Bug auﬂ_ _,aug) , -
-5 Hay )T ()

u and ¢ can be selved from Egs. (6) and (7). and they are taken as the upper boundary condition
w, and v, at the top of the FBL:

(u;,——l- dug * )( -

[ a 7,,@5’ a )7 oy ()
{'Bug dvg dug aug"]
5

. By ex dy

"T;‘( }ﬂ_if ; )+( 7 .a )ﬁl (9)
‘f(aug aug) flzkau v, du, aug)

ax 8y ax By dx By

Wu and Blumen (1982) applied the geostrophic momentum approximation to the PBL.
In this case, obviously, only the large-scale features of the boundary layer are discussed; the
boundary layer flow caused by local, small-scale inhomogeneous conditions (for example, the
region near the interface between water and land) is not included, as it requires three-dimen-
sional models. We use the same treatment as in W-B's work, but change their K ex-
pression. The motion equations of the PBL are:

Bug _, Puy _ 9"2 —flu—v.) . P 0
o Vax Ve, flTvd K (10)
vy Bug L Bue _ du

A e teGe =l ug)+\71<ﬁzf. (11)

Applying the generally used K expression in neutral conditions from mixing length theory
(Blackadar, 1979), we have:

K:{’[(%) + g‘;ﬁ) ]; (12}

= D.d{z+20)

14 Sdlzta) (13)
A

,1:0.0063—1‘;— (14)
1
P

u*—( If;{j);:;{ ’ (15.)
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where / is the mixing length, uy is friction velocity, z, is a height near the surface, and z, the
roughness length {(here | ¢m is taken. representing smooth surface). Of course, other z, may
aiso be taken ta determine the effects of the roughness.  In practice. different z, can be taken
at different horizontal coordinates, The neutral condition may represent the general condition
of the boundary layer atmosphere. Equations (10}{15) form a closed set of equations. Be-
cause of the geostrophic momentum approximation, the advection terms in Egs. (10) and (L1}
have been linearized. On account of the nonlinear K in Eg. (12}, the motion egualions must
be solved numerically, but this is not difficult.
The lower boundary condition is:
w=u=0 where z=10 (16)
The upper boundary condition should be the wind at the top of the PBL determined from
Egs. (8) and (9):
U=ty V=Ur where z=h, (17
k is the upper boundary of the PBL; here 1000 km is chosen. This upper boundary condition
differs from those modern boundary layer models in which the wind at the upper boundary is
taken to be geostrophic wind. Eq. (17) is more reasonable because the individval variation
of the geostrophic wind is not zere in a nonsteady and horizomally inhomogeneous model.

Now we solve Eqs. (10)-(15) under conditions (16) and (17). "’;‘!v , %v and the hori-

zontal gradients of the geostrophic wind components are considered to be known from large
scale variation of pressure field. The equation system s similar to the one-dimensional one,
but the effects of nonsteady and horizontal inhomogeneity have been included through the
geosirophic momentum  approximation.

The vertical grid peoint coordinates are listed in Table 1.

Table 1. The Vertical Grid Peint Coordinates

No, 1 z 3 4 5 & ? g 2 10 11 12 13 14 15 ]

zm) 0 0.25 05 1 2 6 16 iz 04 100 200 300 400 600 BOD 1000

where 1 and ¢ arc defined at these grid points and K at the midways between the grid points.
It is not difficult to transform Egs. (10) and (11} into difference equations and solve them
by means of the method used in steady and horizontally homogencous problems {Zhao, 1983).
The successive approximation method has been used; ie., we choose K =constant, for
example, 10 m’/s at first, and solve Egs. (10) and (I1). After the first approximations u,!" !
are obtained, we substitute them into Egs. (12)-(15) 1o caleulate 10}, 219, [, K\, then solve
Egs. (10), (11} again to obtain #™, ¢*), then K.... The method of Zhao (1983) can make
the iterative process converge quickly. Usually, 20 iterations can give a relative error of 103,
10 iterations can give an error of 1%, and, at the same time. K, «, and other boundary para-
meters are solved.

1. COMPUTATIONAL EXAMPLE: CYCLOME AND ANTICYCLONE

As an example, we solve the wind distribution of the PBL in the following circularly sym-
metrical cyclone and anticyclone as assumed by Wu and Blumen (1982):

tﬁ:i(l—%rz)e_‘;rz ’ (18)
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.

where ““ — " represents cyclone and ** 4+ 7, anticyclone, g= 0.5, r the nondimensional radius, and
¢ the nondimensional geopotential deviation. Assuming the Rossby number Ro= 0.3, hori-
zonial length scale L—=10% km, f=10-*s~', and horizontal velocity scale /=20 m/s. With
K=10 mss, [as in Wu and Blumen (1982)], we caleulate the wind speeds «, v at x= 10* m and
y=0 (here the origin is located at the center of the cyclone or anticyclone, x axis points forward
to east, » axis 1o northy which are represented by the symbol **A™ and a dashed line in Figures
{1y and (2). The numbers beside these symbols represent their heights (m) beginning from
16 m. The numbers beside other symbols represent the heights of all other different symbols
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Fig. 2. The distribution of PBL wind in anticyclone: the legend is identical 1o that of Fig. I,
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beginning from .25 m; i.e., they represent the solution when K is taken as Eq. (12).
Our solutions in the steady case If%‘ei’ = %‘3‘9—:0 in Egs.(10) and (1 !]:I are represented
4

by the solid line and dots in these figures. From Figs. | and 2, it is seen that W-B’s solu-
tion gives much smaller values of wind speed at lower heights than ours. Our angles between
the wind vectors near the surface and isobars are smaller than 45°, giving more realistic results.
For example, in our results, the wind speed at 10 m is about & m/s in cyclone, 11 my/s in anti-
cyclone {corresponding geostrophic wind is 17 m/s in cyclone and 28.6 m/s in anticyclone).
Zhao (1983) had obtained the numerical solutions of three-dimensional boundary layer equa-
tions in a circular vortex with the same K as in this paper, but the gradient winds at the upper
boundary were assumed nat to change with radius. It is not difficult to exiend those solutions
to the case where the gradient winds at the upper boundary are a function of the radius, (ie.,
the gradient wind is an arbitrary function of radius). We can obtain this numerical solution
of the three-dimensional boundary layer model when the gradient winds at the upper boundary
are derived from Eq. (18) without using the geostrophic momentum approximation. Compared
with the geostrophic momentum approximation, these solutions represented by symbols 4™
in Figs. (1) and (2) may be considered to be rigerous and accurate because all the nonlinear
advection terms are compuled.

It can be scen that the simjlarity between the solutions in this paper and the three-dimen-
sional solutions is stronger than that between W-Bs solutions and the latter. It is concluded
that our results not only are accurate, bul also save computation time, and thus are an
improvement on W-B s work.

We may discuss the effects of the geostrophic wind tendency on the solutions of Egs. (10)

and (E1Yif we take .%"T“—and %}; into account. In Figs.1 and 2, the results taking %UE’- =

—8 ms—":24 h at the same location are shown. It is found that in cyclone, |u] for the case

dug

of%—;?>[) is larger than that for T 0; i.e., the value of i is smaller, and vice versa for the

case of -aa"“;-“’f<0. This can be explained as follows: when 6%:>() in Eq.(11),it is equivalent

to putling 3‘;9 =0in Eq. (11} and al the same time make the value of fy, on the rhs.

decrease hy 25':- the decrease of u,(ar the increase of the absolute value of wg) causes

the wind component in x direction to decrease (or the absolute value of # to increase). The
result for the case 0f—%%9’7<0 can also be explained as above. In the anticyclone, all the

results turn  out contrary to the case of the cyclone, and may alse be explained in the same
way (#>0in  anticyclone).
Therefore, from the solution obtained by the method of geostrophic momentum appro-

ximation, we may indirectly infer the characteristics of PBL wind distribution from the steady
PBL wind distributions when the geostrophic wind tendencies are not zero,
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IV. COMPUTATIONAL EXAMPLE: TROUGH-RIDGE SYSTEM

Mow we consider the solutions in trough-ridge sysiems. We solve the wind distribmion
problems in the east of a trough and a ridge.  For simplicity, we assume that the peostrophic
wind corresponding to the trough-ridge system at a certain time is a simple sinusoidal wave:

Hg=CONSL, vg:constsin—zix (19

L
where L is the wave length, v axis points forward to the east and » axis to the north, the cast

of the trough corresponds 1o 0<x<[2'— and the east of the ridge to %—<x<L, and:

%’;’->0 where 0<x<4L

aaz;ﬂ <0 where %<x< %
%";ﬂ <0 where %<.«c< %
,%”;,>0 where %"— Lx< L.

As an individual example, some vegions located in the east of the trough and bounded by

‘3’»<x< 12; are considered. The PBL wind distribution in the case where #,=15 m/s, o, =

5 mjs, and %ﬂg = — 5 ms~* 1000 km is shown by the solid line in Fig.3, where the dashed line
X

depicts the wind distribution in a steady horizontally homogeneous PBL without using the geo-
strophic momentum approximation and its upper boundary wind components are z; and v,.
It is shown from Fig. 3 that the v solution using the geostrophic momeatum approximation
with harizontal inhomogeneity is larger than that horizontally homogeneous solution, especial-

Iy in the upper part of the PBL.  Because the value of %‘Lﬁ‘ 15 not large enough in the
x

above example. this difference is not yet significant,  This phenomenon can be explained as

follows: from Eq(l1), 4 2% <0 because FV8.<70; ks is equivalent to putting u227 — o
dx ax ax

in Eq. (11) and at the same time making fy, on the r.hs. increase, ie. making u,
increase causes the wind component in x direclion to increase alse. This is similar to the
examples for cyclone and anticyclone in the last section, Hence, wind distribution in  the
PBL may be inferred indirectly from the wind in the steady and horizontally homogeneous
PBL and the latter has been investigated sufficiently so far.  Apain, we discuss the effects of

{he geostrophic wind tendency. Assuming%"f: +5 ms=1j24 b and %%:0. as shown in
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Fig. 3. we find that p increases as 3;;79>0 and decreases as %"—<0. These characteris-

tics can be explained from Eq. (10). g;‘:‘t>0 is equivalent to pulting %;’7:0 in Eq. {10}

and at the same time making — fu, on the r.hs. decrease: i.e., making v, increase results

&u

in increasing . The results of _auJL<0 can be explained analogously. If we put T;: 0

at

and %g_: 4-2 ms=!/24 h, as shown in Fig. 3, & decreases as é;t"—>{) and increases as 6‘;:
<0: the reason for this can be found from Eq. (11).

av"‘—)O, the difference of the
ax

wind in this region from the steady and homogeneous PBL wind is quite the reverse of the

case where aati<0, but the effects of %‘t“t and a;—i"’ are the same.  We shall not discuss this in
%

In the east of the trough bounded by 0<x< i’ where
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Fig. 4. The boundary layer wind in the east of ridge and the legend s identical 1o that of
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detail here.

Figure 4 gives the results for the locations in the east of the ridge bounded by -éj—‘«<x<

au
h a7
L where 3

>0, assuming #g=15 mjs, yg=3 m/s and %ﬂ=5 ms~'/1000 km. Com-
% x
paring with the steady and horizonially homogencous solution, u is found 10 be smaller.
From Eq. {11}, u—- Vs 0. This is equivalent to making «, decrease in the steady and

homogeneous solution, and results in decreasing «; it is opposite to the case in the region

dug
at

we can obtain the same conclusion as in the trough case. If the region is bounded by

in the cast of the trough. Again, if we put . =+ 5 ms—}/24 h and % =+2ms —'/24 h,

%<x< 3{‘ , then %“"’ <0. The resulls may be easily deduced analogously.
4 %

Y. SUMMARY

In this paper, assuming that the spatial distribution and temporal tendency of the geo-
strophic wind are known and using the K expression in the friction terms from the mixing
length theory, we have treated the motion equations of the PBL with geostrophic momentum
approximation, simplified the three-dimensional primary equations into one-dimensional equa-
tions, and the wind distribution in the PBL is thus obtained. This treatment retains the advan-
tage of the method of Wu and Blumen (1982) and at the same time gives more precise results.
The geostrophic wind tendency and spatial distribution of the geostrophic wind may be found
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from large scale models. We have computed several examples such as cyclone-anticyclone,
and trough-ridge systems, and obtained the differences between PBL winds in these pressure
systems and those in horizontally homogeneous conditions (i.¢., the isobars are parallel straight
lines). These differences may be explained completely by the motion equations. The wind
distributions in the steady and horizontally homogeneous conditions have been investigated
sufficiently, so that the PBL wind distribution in different sysiems ¢an be inferred from the
steady and homogeneous PBL wind by use of the geostrophic wind tendency and the spatial
distribution of the geostrophic wind.

The treatment in this paper s not suited to small-scale boundary layer problems and only
the wind distribution in neutral and barotropic conditions is discussed here. In principle,
the treatment here can also be applied {0 non-neutral and baroclinic conditions if the non-neu-
tral K expression is used and the effects of the baroclinity to the pressure gradient force in the
motion cquations are introduced.  Therefore, the numerical experiment method discussed here
is a general one.
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