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ABSTRACT

An analytical dependence of the uptical depth solution to lidar equation on boundary values was con-
firmed.  According to the dependence this paper analyzed the sensitivity of lidar equation solutions obtained by
forward and backward integration algorithms to the boundary values and quantitatively expounded an error
limit to the boundary values under a given inversion accuracy. Furthermore, this paper presented a methad for
determination of the far-end boundary value in the case of inhomcgeneous atmosphere. improving the accuracy
nf lidar eyuation solution.

I. INTRODUCTION

Lidur has been increasingly used in the atmospheric monitoring since 1960s.  However,
o far some theoretical difficultics in deriving quantitatively optical properiies of cloud. fog
and aerosal have not been solved yet. One is still confronted with a single equation having
two unknowns, namely, the extinction coefficient and backscattering coefficient. For this
reason, it is usually assumed that the extinction-to-backscattering ratio is conslant along
the path under consideration. Many authors studied the reasonableness of the assumption.
Spinhirne et al. (1980) pointed out that except for the cases of local pollution and particle
enlargement at high humidity, the aerosol extinction-to-backscattering ratio can be regarded
as 4 constant in the boundary layer. Under the above assumption, the problem is reduced to
determining boundary values, Analyzing the high sensitivity of Irdar equation selution using
the forward integration algorithm under the condition of low visibility to the near-end bounda-
ry value, Klett (2981} presented a backward inlegration algorithm. However, as pointed
out by Fernald (1984) and Kastner et al, (1986), in the case of medium or high visibility,
the backward integration algorithm is uncertain of having an advantage over the forward
integration algorithm, and the accuracy in Klett's solution is closely associated with the error
in the boundary value, Therefore, many authors (Fernald, 1984; Balin et al., [986; Ferguson
et al., [983) have paid much attention to the study on selecting the boundary value. Most
methods Tor determining the boundary value are based on the assumption of statistical hom-
ogeneity along the sounding path. However, the above studies do not deal with the ques-
tion about how to justify the atmospheric homogeneity.  As a matter of fact, the homogeneous
assumption along a slant path is generally unsuitable. In one word, how to exactly select
the boundary value is one of key problems about improving the accuracy in lidar equation
solution. This paper has derived a quantitative dependence of the accuracy of lidar equation
solution on the error in the boundary value, analyzed the suitableness of different methods
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solving the lidar equation and presented a new approach ta determinating the far-end boundary
value, improving the accuracy of lidar equation solution.

II. SENSITIVITY OF LIDAR EQUATION TO BOUNDARY YALUES

The conventional lidar equation for the atmospheric sounding can be usually written as

froy o G Sz (0
where [ () is the lidar return signal from the atmosphere at the distance r: , is a con-
stant of lidar system: f(r} and o{r) are the atmospheric backscattering coefficient and
the atmospheric extinction coefficient, respectively. The common way to account for the
dependence between g(r) and o (r) is to assume a power Jaw relationship in the form
Alrl= B (r}*%, (2l
where B, and K are constants.
Let S(r)=V(rlr, oy=c(r:) and g, =0(ru) with r,<Jra. Then the solution to
Eq. (1} with the forward integration algorithm reads
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while the backward integration algorithm reads
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where o, and o, are ncar-end and far-end boundary values for two algorithms, respectively.
Let o*(7) and r=(r.,r.) stand for the exact values of the extinction coefficient and
optical depth, respectively, and t(r,,r,) the optical depth solution, 1.
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Supposing that the noise of lidar signal }~ (r}can be neglected and k-1, from Eq. (1) we get
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Then Eq. (3) can be changed into
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Integrating the above equation over » yieids
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Detine X, ~o,/0%, Hoe=R{X, t8)=1(ru ra)/e3(ry, ra).
Then Eq. {3) can be rewritten as

. - 1 I . .
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Clearly. as X,=1, ®,=1, Le v(riyrn) =t*(ro»rmt, implying that there is no error in
the optical depth solution: as ¥ ,<1, #,<{1 with the result that the solution is [ess than
the enact value and as X.>1, the solution is overestimated.
Similarly, the optical depth solution with backward integration algorithm is

) 1 «
r(r ore) =, Inle™ Coe) — gt Om— L] IN(oL /o), (1)
and 1hen
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wilh  Vo=0w/oh and Fp=R{(X.t*) =7{(resrm) AT¥{rgarml.
Eg. (6) represents the dependence of the solution accuracy using the forward integration algo-
rithm on the boundary value and Eq. (8) the hackward integralion algorithm.

The above-mentioned dependences can be clearly seen from Figs.l and 2. As shown in
Fizg. I, when X, changes between 0.8 and 1.2, R, is roughly linearly correlated with
X, lor ¢%(r.,r.)<C0.5 and AR, ==AX, for t#(r,, rp)< 0.1 Consequently, the relative
errar of the solution is equal to that ef the boundary value. With increasing optical
depth. the error in solution gets larger. For example, when the efror ol boundary
values is larger than 294 (X, >»1.02) and +* (7o, ra ) =2, an unreasonably-negative

L . . Lok 1 . .
extinetion coefficient solution appears, and the vaiue of &= ¥(r.r.} 4 v 1in Eq. (6)is
<1 g

also unreasonably negative, thus the curve ¥, — R(.Y,,r¥) is ended. In order to get paos-
itive extinction coefficient solution, the errors in the boundary values must be less than
0.3% and 0.0006%; for r#=3 and v* =06, respectively. Therefore, the forward integration
algorithm is not suitable when ¢#>>2, However, the conlrary is the case with the backward
integral algorithm, as shown in Fig. 2. When X, changes from 0.01 to 100 (four orders of
magnitude). the error in optical depth solution is less than 407, being insensitive to the bounda-
ry values, The sensitivity of the solution with the backward integration algorithm to the
boundury values continuously gets stronger with deereasing optical depth. As ¥ (r,.
) <05, AR( X my7%) oA X ., thus the backward integration algorithm has no advantage
aver the forward ingration algorithm, Only when optical depth is larger than unity, would



Advances in Atmospheric Sciences

Rz
11.0:
- l1
30 ’
.0E
./
. == Q1
gy
) I I
iz M

Fig, 1. Variation of §&, with X, rDigils near curves denote aptical depth).

E-]

4.0

10

2.0

LI s (A M D s S S e S e S L Y BN BN BN I B

Tl ekl i N Fun] bl L L UL

om o1 1 10 100 =

Fig.2 . Yariation of 8. with X, {Digits near curves denote optical depth}.



> -

No. 2 Lidar equation solution & boundary values 233

XKa of X

40 Ra=12

I B St ot B s e e B s S ) B e |
—~—
—_
k)
2
"
—

30 / /
/ /
/ /
/ /
20 // //
[ S
- T
e —— —
[* o9 e _— —_ =
ATt T T I TRV
1.0 fomresmm == = R, Z 09 LT BT AT
— '_~—._‘\ —\\
C —— —
L - ~
N Sl T~
- Ru=08™~ __ ~
L J | S A L L J;i-.l_-_L‘.lJ .
0.1 1 10

Fig. 3. A demand for the accuracy in boundary values under given retrieval accuracy.

the backward integration algorithm be more suitable because of the insensitivity of solution
to boundary values.
Furthermore, it can be inferred from Egs. (6) and (8)

Xy=(e7"" =11/ (e 1), €92

Xu=("efn™—1)/{™" 1}, (10)
which can be used in estimating a error limit of boundary values under a demand for given
retrieval accuracy, Fig. 3 shows variations of X', and X, with +* for different R, and
Ra As f, =R, there is always | .X,—1,<| X, —1| for any optical depth. Therefare if
o, and ¢, have the same relative error, the solution with backward integration algorithm
is more exact than that with the forward integration algorithm. As shown in Fig. 3, X,
approaches unity as a limit, but X, diverges from unity with the increase of optical depth.
Besides, | X, —1|<|R,—1],| Xn—L|2]Re—1;, which shows that the error in optical
depth sofution with the forward integration algorithm is larger than that of the boundary
value and the contrary is the case with the backward inlegration algorithm,

An important use of lidar is to measure visibility, 109% measurement error in visibility
at airport is generally demanded. Foer this purpose the error in optical depth must be less
than 1Y% and a limit of errors in ¢, and ¢ ,. shown in Table |, is demanded, marked as
do, and o, which are computed from Formulas (9) and (10). When %™>|, 8o ,<1.4%,
but do. > 26%. o, ts generally difficult 1o determine with so high accuracy, and thus the
backward integration algorithm is more suitable. As 2.5 r*<3, the error in g, must
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be less than 639, . Therefore, in order to enhance solution accuracy the more exact determina-
tion of ¢, is important, even for larger optical depth.

The above analysis also shows that the inversion error of lidar equation depends mainly
on the relative ercor of boundary values rather than their absolute error.  The solution stabi-
lity depends on the magnitude of optical depth rather than extinction coefficient. In the case of
smaller extinction coefficient, if optical depth is larger because of very long sounding distance.
the solution with the backward integration algorithm will be still stable.

Tahble 1. Values do, and &o. for Different Optical Depths

™ <a.1 0 0.1-0.3 | 0.3-0.5  0.5-0.7  0.7-1 1-1.5  1.3-2 2-2.5 2.5-3
. |
| I
do(#) o~ | 7.1 L &G 4.3 2.8 1.4 ¢ 0.82 0.27 0.1l
‘ — I7 _ R
4a m (%) .1 14 w20 28 37 : 50 65
i

[1I. DETERMINATION OF BOUNDARY VALLE

It can be inferred from Egs. (1) and (2) that

g!-'_r o(rfygr?
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By combining Egs. (11) and (12), we have
= kS A OXDT22 (o rw) T - 13/2) T8 (1) R (13)

If & is given, question can be summed up as determination of optical depth « (r,, Tt
Below we discuss two cases of horizontsl and slant soundings, respectively.

1. Horizontal Sounding

In the horizontal sounding. a homogeneous atmosphere is usually supposed (Spinhirne,
1980; Lu Daren et al., 1976; Zhao Yanzeng et al., 1980). According to Balin's study {1986,
in a statistically homogeneous atmospbere along the path, v(r,,r.} can be determined by

Ty fm) = Z(rmim)ii‘,’: (r—ry)In z(‘;f;

Slope method is also suitable for the homogeneous atmosphere where extinction and
buckscattering coefficients arc invariable along the path, marked as &, and B, respec-
tivelv. Then Eq. (I} can be changed inlo

gir) =S =In{CiBs — 257, (15)
ra=r e <<y =t
with the solution x=(A"A) ‘g,

dr. (14)
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where x=[In(C.8.), —27. 7,
g="glrdglra) 1",
] | S |
7 :[ 1,
r¥oor, o Fa—
N 1
de = T 2'-'17: ,
T{rnrm) = (rm 113, (163

In the case of the homogeneous atmosphere, g(r,} in Formula (15) is linearly related with
#. but in fact, the lolly homogeneous atmosphere does not exisl. So in this paper the correlu-
tion coefficient ¥ between g(r) and r is used in indicating iheir linearity.

If £(rg.rn) is determined with satisfactory accuracy, the boundary value o (r,) can be
computed as follows

C‘A/:';J)V(fm] U.—ﬂ.z[r[l.r_m_) N (rm.‘],

t=S(rmd /8 () =~

= ,

CABU‘—’_:U'"_%JEB 35
(Ve =13,. (17)

Table 2 compares the boundary values determined by different methods. In the table
% and o* are the exact optical depth and boundary value, ™! and giPare the optical
depth and boundary value derived from Formulas (13} and (14). +™ and ¢ by Formulas
(16) and {13), respectively. ot is the boundary value by Formula {I7), ¢%' is equal to
&, computed by the slope method, R is the correlation coefficient and No. stands for ex-
tinction coefficient distributions where No. 1-7 represent the distribution curves in Fig. 4 and
No. 8-13 the curves in Figs. 5-7 respectively. For the uniform distribution No. 13 withg(r)=
|0 in Fig. 7., the boundary values determined by different methods are all absolutely exact.
For the six distributions marked as No. 1-6, being approximately regarded 4s homogeneous
distribution with a random oscillation, the mean extinetion coefficient changes from 0.8 (1/km)
to 10 (I1/km) with the corresponding visibility ranging 49 kin to 0.4 km, and mean errors
in o, o2, g, and ol are 4L6%, 26.6%, 12.4% and 11.0%, respectively. The
error of the boundary value determined by Formula (17) is the smallest and the value derived
from Formulas (13) and (16) has got satisfactory accuracy, but the value from Formulas (13
and (14 has got the largest error, even as high as 1009 or more. The distribution No. 7 with
strong oscillation and distributions No. 8-12 with systemalic variation <an not be regarded as
homogeneous, and hence correspond to the larger deviation of boundary values determined
by above-mentioned methods. Generally speaking, the error in g% is the largest and
o with the slope method smaller. A homogeneous atmosphere will lead to the correla-
tion coefficient equal to unity ( #=1). However, it can be seen from Table 2 that the values of
R for inhomogeneous distributions marked as No. §-12 are uncertataly less than those for
No. 1-6. Therefore, the linearity of InS({r} with r can not be considered as an unigue
criterion on homogeneity of atmosphere.  The above analysis shows that the boundary values
derived from Formula (17) or Formulas (13) and (16) are more exact under the condition of
statistically-homogeneous atmosphere. In the up-slani path sounding, & larger systematic
variation ol extinction coefficient with height may lead lo larger error in boundary values
determined by above-mentioned methods.
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Table 2. Comparison of Boundary Values and Optical Depths Determined with Different Methods

T T H i

No. * o ok ot ald o ald R offt o
' . . ! | |
1 | 184 . 188 | 1.9 9.8 I 0.5 9.8 1.3 8.85 | 0.643 -
e ‘ L5l 168 | 139 3.20 | 4.55 3.8 5.76 .62 | 0.843
s ‘ Lol 1.4 | o.998' .74z 0.963 9.988  0.861 0.737 | 0.827
T 0T o 1oz | a.9os| 0.3 | 054 0.04 6.4 Cara | 0.793 |
s IV a1 0.356 | 0.435) 0,273 | p.222 0.218 0289 0.266 0.637
% p.211 0.3 0.238 | 0,090 | 0.189  0.119 105 0,112 | B350
7 | o.150 o0.547  0.305| 0.088 | 0.578 0.1377: 0.207  0.322 | 0.238
T U ose 140 a2 | o024 0.59 u.so; a. 6647 0.654 | 0.802 " 0.025 | 0.163
g 154 -‘ 0.757 108 | 0.358 | 0.091  0.402  0.247 0.-2_9-9: o778 | .25 ' 1;19
_jjo 77_7 ] 1"3 7{ 0'53}\ 1.55{ L1zl 0.054 _1.471 o.aa} Léiéﬁ&r- i 70.;5733-‘ 0. 434 | 1.66
i1 0.765 | 1.694 | 0,753 0.204 | 2.19 | 0.981| .28 | 128 09321 0,217 | 0.TE
11-2' ,,i x..-nw _ 2.75; 2.3% Lz ! 18.4 579 7;.437 jj'54_|,_uf, ‘:1.00 !_717.27
13 270 2.70 | &z |10.0 | le.p  10.0 | lo.0 | 10.m \ 1.0 99.z  3.88

2. Slant-Path Svunrding

In the case of inhomogenecus atmosphere, new information must be introduced in
order to determine the far-end boundary value because of two unknowns in lidar equation.
Then, horizontal lidar return signal is added 1o infer the boundary value g, when slant-path

sounding.
Let S(r)',a[\r).and F represent the horizontal lidar return signal, extinction coeffi-
cient and optical depth, we have

\rmS(r)""afr:S (CaB) Y5 expT — 28 {ro, rm) fR]—expl —2T(0, ra) f&}. (18}
. Ta
Suppose that the values B and £ in the slant direction are equal to those in the horizon-
tal direction, we have
VTS (r) g—(CABn)""{exp[72r(0,r.,)/k]—exp[er(O,rm)/k]}. (19)
- ro
Combining Eqs (18) with (19] leads to
"S(r} ”‘dr,/\ " S(r) thdr

= {CAD[: - Zz(U,rn),fk]— expl —2¢ (0, rw) fRIV/
texpl - 28(0,r,) /R1—oxXpL — 27 (0,r,) /R]Y, {20
1—expl—2¢(royru) /e]=4{1—cxpl- 27 (royra) /RIV /T, 2

r(ru,rm):—glnhf[lfexp(—fo’k)]f/C}, (22)
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where C=expl-27(0,r,) /k1/expl — 270, r.) /2],
=178 ””’dr,"[rm KNOEY
¥ w F

If . is small or th;re is a smaller :'ariation in the extinciion coefficient with the range of
O<r<r,, then {0, r,) =~7(Q, r,). and hence C~1. Herealter, C=1 is considered.

If there are no cloud and fog and no local pollution source in the boundary laver. k=1
is usually suitable.

According to Klett's study (1983), the exlinction-to-backscattering ratio in low cloud
or fog is greatly different from that in aerosol layer. In this case. setting % to be equal to unity
and then computing the optical depth from Formula (22) can lead to large error of inversion.
According to Kletl's another paper (1981}, the forward integration algorithm is very sensi-
tive to the error of & for the larger optical depth. The characteristic can be used in deter-
mining the value of 5. The solution at r=, with lorward integration algorithm is

. [ 20 o, e i
o‘(rm)-)[S(rm);’S(r")]”",."i o' — 1;\ [Siri/S {r;)]""dr}. {23
"PU
In order to get a positive solution. & must satisfy the condition
2 {rm A E g~
c:‘—f-k 1 ES(r)/Sir )] e 0,
A
or
. 20, rm o g .
Gglki=1-- *k*\ [S{n S (r ) T adr >0, {21
ELY

For the larger optical depth. g(k) approaches zero, and thus a <light deviation of £
from the exact value can lead to unsatisfaction of Eq. (24). In this paper the solution of £
is considered as the value which satisfies
0<g(ky=0.02. (25)

The results of numerical experimeni in the case of -1 are shown in Figs. 5-7,
where »,—0.00 km, €-=1, and horizontal extinction coefficient distributions in Figs. 5-7
are respectively tuken to be distribation curves 5,3 and 1 in Fig. 4 with 3, being 0.2, |
and 10 (I;km). First, z(7,,r,) is determined from Eq. (22). then the boundary value
o' from Eq. (13) and the optical depth z¢ from Eq. (4). All these are listed in
iable 2. The observations  {r) are assumed to have randon errors with a maximum  of
109 in numerical tests.  As shown in the figures except for distribution 2 in Fig. 7, this treat-
ment reasults in satisfactary numerical tests in which ¢! has much higher accuracy than
o, oW, ¢ and ot and the error in % is less (hun 12%, (see Table 2). For
distribution 2 in Fig. 7, g'® is approximately one order of magnitude larger than the exuct
value, thus the solution has larger error, which is due to the fact that larger optical depth of
7% (rys rm) =2.7 leads to the larger error in z(r,, rn) computed from Egq.(22). This
point can be clearly seen from the following analysis.

Let

ye{1—oxpl— 2% {roera) fRI T
Then Eq. (21) can be changed into
de R ol 2e(ryra) fED) Y
T 2t{resrmrexpl —2t{rara) /Rl ¥
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When z(ryern)>1, 1-oxpl—2v{ryr.)/k]~1, and hence we have in the case
of =1

dr _explar{ryra)/Rldy dy

T 20 (Fas P} y T ow?

A= NP2 (rusr) /27 (Pey v (27)

Table 3 shows the value of A for different optical depths. When t{ry, ralezl, A
rapidly increases with the increase of ;. For example, 85 r =2.7. A=4[, which implies that
1% error in v would lead to 41°%; error in optical depth solution, and as -2, A-=13.6

thus, as <2, if the error in y is less than 1%, the error in ¢ (r, r,} computed from
Formula (22) is less than 14% . For very large optical depth Formula (22) is not suitable.

Tabie 3. Variation of A4 with 1

Fig. 4. Extinction coefficient distributions.
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Fig. 3. Inversion re-ults {dotted lines) of extinction coefficient distribution (solid linesy under high
visibility,

L1

40

T (1 kmy
Fig. f. Inversion results (dotied lines) of extinction cocfficient distribution (solid lines) under medium
visihility.
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Fig. 7. Inversion results {dolied Lines) of extinction coefficient distribution (solid lines) under low
visihility.
The results of numerical experiments in the case of %=1 are shown in Tables 4 and 5.

where the extinction coefficient distribulion is taken Lo be distribution 2 in Fig. 6 with a
cloud layer at the height of 0.4 km and the exact values of & and optical depth are 1.34
and [.7% respectively. As shown in Table 4, when %<{1.28. an unreasonably negative
gl%) and the solution with the forward iniegration algorithm are obtained. As &=1.29,
2{k) =0.013, satisfying Eq. (25). Therefore it is selected as the solution. In Table 5, o
is the exact boundary value, of) and o' are boundary values computed from Egs.
{22) and (13) under the assumption of =1 and k=129 respectively. As k=1, on'=
—(1.04, being unreasonably negative, and as k=129, gi= 1.95 which corresponds to the
optical depth salution of 2.08 and the solution error of 16.97%. Evidently, the solution with

k = 1.29 is much more reasonable than that with 5=1.

Table 4. Variation of Function g{k) with &

C o oo RN l 1.5

k 1 l .1 | ‘ 1.28 .29

L A
g ~0.622 ‘ - 0.331 1 —-0.125 —0.061 ‘ --0.033 0.013 ! 0.024
| L

Table 5. Boundary Value and Optical Depth Solution

Y 3
! Uinz' 13

1.95




~n 2 Lidar eguation selution & boundary values 241

1V, CONCLUSIONS

(1} According to the dependence introduced in this paper of the optical depth solu-
tion 1o [idar equation on the boundary value, the solving stability of lidar equation depends
mainly on the magnitude of the optical depth rather than extinction coefficient and the
solution accuracy depends on the relative error in the boundary value. The error in optical
depth solution with forward integration algorithm is always more than the error in bounda-
ry values and with increase of optical depth it gets more sensitive to the Jatter. When the
error  in boundary values is within 397, only for optical depth less than unity, the solution to
lidar equation with the forward integration algorithm will be reliable. The contrary is the
case with ihe backward Infegration algorithm, i.e. the error in optical depth solution is
always less than the error in boundary values, and the larger the optical depth is. the less sen-
sitive to the latter error the solution is.

(2y Under the condition of the statistical homogeneily along the horizontal path, first
we find the mean value of extinction coefficient by slope method and then determine the
boundary value from Eg. (17] or (13). As slant-path sounding, the assumption of the
statisticul Lomogeneity alang the path and hence all methods for determing the boundary
value bused on the assumption are generally unsuitable. In this case, il new information is
not introduced, the far-cnd boundary value can not be exactly determined and it is difficult
1o justify the atmospheric homogeneity according to slant lidar return signals. In this paper,
a method for determining the far-end boundary value in the slant direction through introduc-
ing horizontal lidar return information is presented. Numerical experiments show that the
method is suituble for different extinction coefficient distributions with the optical depth less
than 2. As optical depth is very large, the method can lead to unreasonable solution. In
fact, lidar penetraling capacity is penerally within a limit of the optical depth equal to 2.

(3] As the optical depth is larger, he solution with the forward integration algorithm is
very semsitive to the value of . The characleristic can be used in determining & with the error
less than 5% for the optical depth larger than 1.8
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