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ABSTRACT

In considering the weak non-linear effect, and using the small parameter expansion method, the analyt-
ical expressions of the wind distribution within PBL (planetary boundary layer) and the vertical velocity at
the top of the PBL are obtained when the PBL is divided into three layers and different eddy transfer
coefficients K are adopted for the three layers. The conditions of barotropy and neutrality for the PBL are
extended to that of baroclinity and non-neutral stratification. An example of a steady circular vortex is
used to display the characteristics of the horizontal wind within the PBL and the vertical velocity at the top
of the PBL. Some new results have besn obtained, indicating that the magnitude of the speed in the lower
height calculated by the present model is larger than that by the model in which k is a constant within the
whole boundary layer, for example, in the classical Fkman boundary Jayer model and the model by Wu
{1984). The angle between the wind at the top of the PBL and the wind near the.surface calculated by
the present model is less than that calculated by the single K model. These results are in agreement with
the observations.

1. INTRODUCTION

In the theory of the classical Ekman boundary layer, air within the PBL moves under
the balance of three forces: the pressure gradient force, the Coriolis force and the frictional
force. Wu and Blumen (1982) introduced the geostrophic momentum approximation sug-
gested by Hoskins (1975) into the PBL, and improved the theory of the Ekman boundary layer.
Near the center of a circular vortex, however, the wind ayproaches the gradient wind and
deviates largely from the geostrophic wind. Introducing nen-linear effect, Wu further im-
proved the application of the ggostrophic momentum approximation within the PBL by
means of a small parameter expansion method, which is helpful to improve the paramete-
rization of the PBL and to research the feedback of the PBL to the free atmosphere,

Wu's work is the basis of this paper. Here, the boundary layer is divided into three
layers and the different eddy transfer coefficients K are adopted for the three layers instead
of the single K model. The first layer is the surface layer where the atmospheric motion may
be described as follows: the turbulent viscous stress is a constant and therefore, the well-
known logarithmic distribution of wind under the neuiral condition can be obtained. The
second and third layers form the Ekman layer where the motion equations include the terms
of non-linear advection. To get the approximational solutions, a small parameter ex-
pansion method will be adopted in the present study. In the three layers, the equations. de-
scribing the motions are different and so are the numerical values of . These cause some
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difficulties for solving the equaiions. Bui by using the connecting conditions that both the
wind and the viscous stress are continuous on the interfaces between each two layers, the
wind in the three Jayers may be obtained easily and uniquely. Furthermore, by means of
the continuity equation, the vertical velocity at the top of the PBL can be gained.

In the Ekman layer, the first-order approximation solution is similar to the classical
Ekman solution which is obtained under the condition that the geostrophic wind is steady and
homogeneous, In the second-order approximation solution, the effects of the local and
advective change terms are included, that is, the influences of nonsteady and inhomogeneous
of geostrophic wind are incorporated. Furthermore, in adopting the three sections K model,
i. e. considering the variation of turbulent viscosity with height, il can be avoided that the
magnitude of the speed calculated by the single K model is so small for the surface layer
that the results of the present model are more in agreement with the observations

There are six sections in this paper. The governing equations are given and the horizontal
velocity is derived in Section 2; the height of the top of the PBL and the vertical velocity
there are derived and several factors affecting the vertical velocity are simply interpreted in
Section 3; an example of steady circular vortex is introduced and the results of the present
solutions are diagramatically analyzed in Section 4. Above-mentioned results under the
conditions of barotropy and neutrality are extended into that of barcclinity and non-neutral
stratification in Section 5: some brief conclusions are given.

1I. BASIC EQUATIONS

According to Wu, the set of the atmospheric motion equations are:

o4 Su ou aéﬁ—fu a(kauj

o “‘a tugy Tty T 2z
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where {n,v,w) are the velocity components along the coordinate axes (x,y,z}, ¢ refers to
the geopotential deviation, f,ibe constant Coriolis parameter, and A the eddy transfer

coefficient.
In order to get the non-dimensional equations, the following expressions are commonly

used:
(2, ¥) =L, ¥}, z=H.Z
(u,) =V (o', v), w=Wuw,
d=D¢', =Kk,

fu | av ' e
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where R, is the Rossby number. For the PBL, R,<I, for example, F,<0.3. Substi-
tuting {2) into (1), (1) is reduced to;
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Ru(\m+ Ty o R ) ++E KE)’

B fu B 8, v
Ro(a}. uaxfuay = 31_'“‘}‘ Ea&:(ké )y (3]
du v Bw
dx  dv Bz =0

where primes have been omitted. £ is Ekman number:
2K
STk (4

The PBL is divided into the surface layer and the Ekman layer, the latter is divided
into two layers again. There are three layers on the whole. & in the three sections model
may be written as follows:

b2y (First layer: z,<z<h,)
b=k, =k, (Second laYer3 h’l‘-<~2<hz.) ( 5)
by="Pk., (Third layer: h.<z)
where ¥ is a positive number less than 1.

Physically, the frictional force is very important within the PBL and can not be omitied:
mathematically, although ' is a small parameter, it precedes the highest order derivative
and the equations are singular. If all terms containing £ are neplected, the solutions c¢an
not satisfy the full boundary conditions that at the top of the PBL, the wind equals the
wind of the free atmosphere and at the bottom of the PBL, the wind equals the wind at the
earth’s surface,

In the first layer, following the folding model (Gandin, 1958), we can find that the wind
{u,,0,) will satisfy following equations:

%k &u,/3z=-constant, % dv,/dz=-constant, (6)
That is, the viscous stresses do nmot change with height, in other words, the transfer fluxes
of turbulent momentum in vertical direction are constants. Therefore, this layer also refers
to the layer of constant flux.

Inn the Ekman layer, the Coriolis and frictional forces are approximafely the same order
of magnitude. Introducing the stretch transformation:

n=E%z, (1)
and setting:
2‘0=E“12—'w, (8 j
we obtain the motion equations of the second and third layer
8t au, i, 8u, Bu,
kqanz 4vag+!l?(at +nax+ nay"'}?o ua,n>
v, . ov, v, v, _ av,
k.. af? _ﬂn4—ug+Rc( at +uu + uay + R, an )!
aAu”_‘_a_U"_'_@.!:O’ (’9)
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(n=2, E~%h=n<n<p.=Eths n=3, n<n).
where ug, v, are geostrophic winds, The upper and lower boundary conditions of the
PBL. are:
p—>o0, U, v are limited,
2=z =0, u=0, {10)
where z, 15 roughness.

The aim of the paper is 1o solve the basic equations {6) and (9) under the boundary
conditions (10). Since the motion equations in the three layers are different, at the inner
boundaries {z=4#,, k), the connecting conditions must be satisfied. Physically, at
z=fh, h., the wind and the viscous stress should be and must be continuous mathe-
matically; if these two connecting conditions are satisfied, the solutions {(u. v,)
n=1.23 are in existence and unique. This can be seen obviously from the following
solving procedure.

In order to avoid reducing two second-order differential equations into a fourth-order
differential equation, the complex velocity F, and the complex geostrophic wind F'g are
employed as

F.=u,+iv,, (1=1,2,3)

Fa=ug+tivg. {11)
First. suppose that the PBL is barotropic, thus the geostrophic wind is independent of the
height. Egs. (9% can be reduced to

aF, _
& Eratd
LR Y oF, F,+F, of, F.—F, 8F, .. &
Sr G i =P R (G e G T R Ty b
(“=2a 3), (12}

where the bar ahove the letters expresses the conjugate complex. g, is a pending complex
constant. [, is expanded with the small parameter R,. For simplicity, only the first-
order and the second-order approximation are taken in the paper.

Setting
F,=Fo+ R (ﬂ:1s293)9
a=aat Rans {13)
and substituting (13) into (12) and classified with for the same power of R, we obtain
aF,,
B H ksrl ano = tavy
%kn%&"‘ian=“iFg,(ﬂ:253)i (14)
ar,,

Ry kﬂ?_a';‘; =y

1, &Fs _.p _Qﬁ‘un+§»~%§on BF 5 Foa— Fon 8F s
2% T M ot 2 ox 2 By’
(n=2,3). (15)

The boundary conditions (10) are correspondingly reduced to
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R p—ooo, F,y is limited,

="1lo> Fm:'ﬁi (15)
Rsn—oe, Fy is limited,
= T1os Fi\:"ov (17)
where p,=F~'/*z,. The formal solutions ol (14) under (16) are
A1 TR}
j 0 kx ll’l,ms
Fo=Fagtage " ~ane™ ",
Fn::ng+ﬂ[’n9_rsqg (18)
where
1414
r.,zrjgﬂ", (r=2.3). (19

o fivay i sy, are the pending complex constants.
The expressions for the continuity of the viscous stress and the wind at »n=p, are

ey ™= E—%—k;%'zy (20}
f““l 'F‘c'i
at g=n, are
iy A oy, 0P
Kok, o ="k, Bn
Fuz:FqJ- (21)

Substituting (18) into (20) and (21) yields a closed set of linear algebraic equations for these
four complex constants, It iseasy to solve the set, The results of the first-order approximation

solutions are

A .
Flll:?llFﬂlﬂ ;].,

Fo=Fo+ A Fge™s + 4;F g7,

FnJ:F9+A;Fue_r3"s (22)

where 4,, A.. A, Ay are given in Appendix 1.

The method for solving (15) under (17) is similar to the preceding method, but the
special solutions of the inhomogeneous ordinary differential equations are more complex than
the aforesaid. Substituting {22) into (15) yields (he special solutions of F,, and F,,
Y.. ¥, as foliows

Yzz}ri +st YS:Y‘; +Y§r

dF, dy_ 2 2 8

Vi=Yi=i dz ’ E=E"+u!_a? 'I'Ué'as (23)
V2, V# are given in Appendix 2,
{23) shows that Y, ¢an be divided into two terms: the non-viscosity term V! and the viscos-
ity term ¥ #. The former is only dependent on the pressure field but independent of the
visgous friction since it does not include the viscous coefficient. The latter is dependent on
both the geostrophic wind of the free atmosphere and the friction of the PBL, which can
be seen to include F, and 4, For ¥, the same analysis can be made,
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The formal solutions of (15) under (17) may be assumed
Fi, g‘m"1

F,;zyz—l-a]ge 2 ™27,

F|3:Y3+ﬂ';3€_r3q! (24)
where g, a2s s @ afe the pending complex constants which can be obtained
thtough solving the closed algebraic equations,ie. the connecting conditions analogous lo
{200 and (21). They are given in Appendix 3.

Up to now, the szcond-order approximation solutions have been obtained. The winds
of three layers are
Fn:Fox"I"RnFna
F1:F|I1+RBF12’
F5:F03+RDF133 (25)
“‘herc FO\? FUZ’ F(l] are givcn by (22)5 FH’ Fl!! Fux by (24)‘
Combining the well-known formuls

k, = HV* (26)
and
|kaF‘ ] (27)
vields
=wsla |, (28)

where I/, is the frictional velocity, ¥ is the Yon-Karman constant, generally it is taken as
0.4, Eq. (28) is a implicit equation which connects the geostrophic wind and g, in di-
mensionless form, it is reduced to

k= (o P L AF ot R |, (29)

where A, and o,, have been given in Appendix 1, 3. By use of the iteralion method.
it is very easy to get j, from known pressure field.
Cancelling the surface layer and taking r=1, we have
=11 =0,
ki=Fk;=1, (30)
the sclutions (22) and (24) are reduced to
Fa=Fu=Fg—Fge ™%,
F. .=F, ,=YV+D e, (31)

where

D=4+ +(E-E)p,

Y=A+ ’%*C' {(1=i)pemtr+n7— %—rui*-‘w+%D=‘e-“--=’=—%‘—ﬂe-=". (32)

The first expressions of (31) is the same expression as (16) of Wu, the second expres-
sion of (31) as (18) of Wu's, showing that the single K model is a special case of the three
sections K model.
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The present solutions are of many differences from the solutions of the single K model
within the first layer, e.g. the former is of the logarithmic distribution of wind which is in
agreement with the observations, but the latter is representative of small wind. In single
K model, k is taken as an average value in the PBL larger than real % within the first
layer: moreover. viscous stress b du/Pz should be a constant, consequently; the shear
value Pv/d2z of wind is to be very small. Since the velocity at the earth’s surface is zero,
the wind calcufated by the single K model in the first layer is obviously too small.

1. VERTICAL VELOCITY

At the botiom of the free atmosphere, i. e. the top of the PBL, the friction force
is negligible, where the weak non-linear wind F, can be obtained by omitting the terms
conlaining the second-order derivative in ({4) and (15} as follows

FT=FH+R05\‘%‘F"‘. (33

It it conventional to designate the height 5, at which the wind for the first time, in the

PBL is parallel to £, at the top of the PBL. Although the wind in the PBL is still

variable above the height, its variety in magnitude and direction is very small, only oscil-

lates slightly near Fy, which is only of mathematical significance. In fact, 7; may

approximately be regarded as the lop of the PBL. Following this traditional method,

ns can be gained from the equation

argF.=argFr. (34)

Substituting (25) into the continuily equation {9) and integrating this equation with
respect Lo 7. we obtain the vertical velocity at the top of the PBL as follows

Wr=w Tt wf fw T wi,

e s

wrmz%(n,—qu-mln %’)V' (A\Fg"’Rnan) L}

., d

wir= v 150 B - A - 1= Tram ) | o)

wit=—RAG}, (G is given in Appendix 4.)

where
Bsssef:"r- {35)
The vertical velocity at z, has been assumed to be zero.

¥. indicales the divergence operation, it is defined as

X is any complex variable; X, X, are its real and imaginary part respectively.

Eq. (35) shows that the vertical velocity at the top of the PBL is dependent on four
terms. The firsl term M/ S% is the contribution of the first Jayer. The second term #/ Ais
a non-viscous and nonlincar term. It has no viscous coefficient. It let R, equal zero,
this term will disappear; thercfore there is no such term in the classical theory of the
Ekman boundary layer, which is caused by non-linearity because it includes R, which is
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connected with the term of the non-linear inertial force. In addition, #/ % also includes
two faclors p,—n, and d,f./dt, showing that this term is directly pioporiional to
the depth of the Ekman layer and the rate of change of geostrophic vorticity following
motion. For example, when the local rate of change of geostrophic vorticity is not equal
to zero, the vertical motion at the top of the PBL will occur. The third term M/ is a
viscous term but is independent of non-linearity since it contains £, not £, This term
15 just corresponding to the vertical velocity at the top of the PBL in classical Ekman theory.
Introducing {30), and setting R,=0, we obtain

Brewi= 1L, (38)

It is Charney and Eliassen (1949) who obtained the vertical velocity at the top of the PBL,
directly proportional to the geostrophic vorticity. The fourth term 3} is a term of vis-
cosity and non-linearity since it includes both k,, £, and R, but not included in the
Ekman theory.

1V, EXAMPLE
For simplicity, some properties of the boundary layer solutions developed above will
be illustrated as a steady, axisymmetric circular vortex. A pressure field is assumed to be

=215 () i, (29)

where ¢ is the non-dimensional geopotential deviation. The same expression as (39) is used
for an anticyclonic (+) and cyclonic (—) vortex. ¢ is a constant, e.g. (.5.

Figure 1 is a hedograph of horizontal wind in the PBL at x=10°(m), y=0. E line
represents the Ekman solution, GM, the semi~geostrophic solution of the single K model
which corresponds to Egs. (23a) and (23b} of Wu and Blumen (1982), NL the weak non-
linear solution of the three sections K model which is (25) of the present paper. The
sabscripts J and 2 denote a cyclonic and anticyclonic vortex respectively.

vy (m/sech

8 320._-—399-.. 600
- 30 T ~.%
61 el ~ % y
suﬂ‘?y..{m
N 2. GM,,
4
m‘a;‘.\“m
\
2 il
10004
: Ll imioag
oz 4 8 8§ 10 12 14 16 18 20 22 24 %

Fig. 1. Hodograph for horizontal wind in the FBL (The legend
refers 1o the text). (R,=0.3, E=0001, F=0.0000)

1t can be easily seen {rom Fig. 1 that near the top of the PBL NL line approaches GM
line and both of them are reasonable, that is, the wind is larger than the Ekman solution
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for an anticyclonic vortex and is smaller for a cyclonic vortex. The reason is that after
incorporating geostrophic momentum approximation or weak non-linear effect, the inertial
centrifugal force makes the wind increase an anticyclonic vortex and decrease a cyclonic
vortex. The Ekman solution can not reflect this difference of wind between the cyclonic
and the anticyclonic vortexes so it is not in agreement with the fact.

It can be seen from Fig. | that pear the origin, the angle between E line or GM  line

W, [tm/secg)

X (1000 km)

Fig. 2. A distribution for the vertical velocity at the top of the PBL
{The explanation refers to Fig. 1).
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and the herizontal axis is about 45°, but NL line is less than 30°, suggesting that for these
two models, the angles between the wind near surface and the wind at the tep of PBL
are different. Fig. 2 shows the distribution of the vertical velocity at the top of PBL with
(x,y). E, line and E, line are symmetric, but GM. line and GM, line are not symmetric,
neither are NL, line and NL, line. This can be explained simply by: 1) E, line and E,
line are from (38) and the signs of £, of a cyclonic and an anticyctonic vortex arc op-
posite but their absolute values are equal; 2) E, line and E, line are symmetric. Both
GM line and NL line contain the effect of inertial centrifugal force, i. e. the terms in-
volve Ro=W7 0, B, W9, all of which contribute to Wy, 7} is taken as a

o) alg
8x tg dy

sample to interpret simply. The rate of advective changes is represented by u,

For a eyclonic and an anticyclonic vortex, the signs of 4,, v, are opposite, so is £,
but their products are the same, the total absolute value of W,}!® and W/ which
only contains &, are not equal. Therefore, the curves are not symmetric, which shows
that non-linear inertial centrifugal force causes the difference of vertical velecity at the top
of the PBL between a cyclonic and an antigyclonic vortex.

The most evident difference between the single K model and the three sections K
model appears near the center of the steady circular vortex. The W, calculated by the
former approaches the maximum, but the latter tends to zero due to the values of different
L. It is known that the friction stress is caused by the vertical shear between the wind at
the top of the PBL and the wind at the earth’s surface. Near the center, both of them ap-
proach zerp, so does &; thus the convergent rising current and the divergent sinking current
caused by the frictional effect are certainly very weak.

V. THE EFFECTS OF STRATIFICATION AND BAROCLINITY

In the surface layer, if the atmosphere is non-neutral, the logarithm distribution of wind
does not hold again. In this case, the atmosphere is stably or unstably stratified, the
Businger commonly used function

(1 - ISE—‘)"‘“, (for unstable stratification f—<o )
G = ' (10)
1+4. Tf (for stable stratification Iz:>0 )

may be adopted, where [, is the length of Monin-Obukhov. Consequently, the wind in the
surface Tayer satisfies the equation as follows

. L
klﬁ%%:além(‘%%)' (41)

The first equation of formal solutions of (18} and (24} is reduced to
1
an[ A _ . (0E”
Fo= g =0 (L))

Pt fog = ()] w

[

where
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( 211114-g +In 42_52 — 2arctgg - g—, (—’Eé(o)
wm(%‘j—%% (g=(1—15"f%)*j), (43)
\ —4.7"—):’1’:—% (”—fé>o).

We can use the above-mentioned method to solve the wind in the non-neutral stratifica-
tion atmosphere. Rewriting the left hand side of the connecting conditions (20), we have

Ty > a0 P ( fg),

1
- o Lt - + -_,1,,[ o (QEE ")
FrmanH, (H=pwl)oF=at, (H'=p[n?-s.("7)]). o
We obtain the first order approximations of the wind in the non-neutral stratified PBL as

&pofiog 0. ()]

(e

Ay in (45) and 4, in Appendix 1 are of the same form, but their values are different, and
so the physical process is also different, because the /7 in A has come to H' now. This
shows that the stratified effect has been considered. The procedure solving #,, by means
of the sanme method is not described here. The treatment of the stratification in the Ekman
layer is not described in this paper either.

The baroclinity in the PBL must be considered when the temperature field 7 is inho-
mogencous. Supposing that the pressure and temperature field at the bottom of the free
atmosphere are given, we have

Fsr(’?) =F.G?"_-ﬁ(’7) =F.'7T“'T(7?T_J?)9
Fg)=a(n +ivis), (16

w) =i Etor-ms o= G lrr—ns

] aT
r= fr a y +‘ 83:_)
where F ., is the complex geostrophic wind at the top of the PBL, F () is the complex
thermal wind. The special solutions of the second equation of (1d) are still 7y, but the
special solutions ¥,,V, of the second equation of (15) are much complex than that in
barotropic atmosphere because the second power terms appear on the right-hand side of
(15) under consideration of the nen-linear advective effect.

The first-order approximate formal solutions in the baroclinic atmosphere can be writien
as

oy n
Fo=2%n"
o k, lnﬂl,

nzsz(n) +Guzf-’-'2q + ﬂ-’:.ze—rzqa
Fo=Fg(n) +ane™". (47)
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The expressions of the complex constants g, @es op:s e 8¢ given in Appendix 3.
The formal solutions of F,,,F.,F,, can still be written as (24); g, 0290001 858
still given in Appendix 3, but now the viscous parts of speciat solutions ¥,, ¥, are differ-
ent from those in Appendix 2; necessary is a reference to Appendix 6. Up to now, the
second order approximate solutions have been solved which still are (25} formally, but
the value of the solutions and the physical process are different from thoese in the baroiropic
atmosphere, because the thermal factor has been considered. For example, the geostrophic
wind is no longer independent of height but is the function of the height, If the temperature
is higher in the south than in the north, the thermal wind blows east. If the geostrophic
wind near the earth’s surface blows south (north), it will turns counterclockwise (clockwise)
with height, If the geostrophic wind near the earth’s surface blows east (west), it will increase
{(decrease) with height. 1t can be seen immediately from (47) that the variations in direc-
tion and magnitude of the geostrophic wind directly affect £,,F,,,1. e. the wind within
the Ekman layer. In the surface layer, the wind is derived from {47), Appendix 5 and
(46) as follows
o B,
Fu= ;F(n)m‘_??
It can be seen from (22} and Appendix 1 that the second term of (48) and F,, in
barotropic atmosphere are formally identical. Thus it is the first term of (48) that revise
the wind in the surface layer under the baroclinic condition. If temperature in the south
is higher than that in the north, the complex thermal wind F (1) blows east, whereas — F (7)) ,
blows west. In this case there exists a weslward revision of ithe wind in the surface layer.
It is helpfu! to predict exactly the direction and magpitude of the wind near the earth’s or
ocean's surface.

%+ ) (SiBuan—S:Badn )y u<n<n). (48)

V1. CONCLUSION

Considering the non-linear advective effect and the variation of the viscous coefficient
L with either height or geosirophic wind, and using a small parameter expansion methaod,
we have derived the analytical expressions (25) of wind in the PBL and (35) of the vertical
velocity at the top of the PBL in this paper. By means of Businger’s universal function the
condition of the neutral atmosphere in the surface layer has been extended to the stratified
atmosphere, the first order approximation solution is (45). Finally, by introducing thermal
wind, the barotropic atmosphere has been extended to the baroclinic atmosphere, the
wind is expressed by (25) and Appendix 6.

The present results arc used to obiain exactly the wind in the PBL. The improving
of the calculation of vertical velocity at the top of the PBL contributes to the research of
the feedback of the PBL to free atmosphere. But there exists a solving condition R,<1
in this paper, and is necessary to have a further research in regard to the application of
lower latitude. In addition, it is, after all, so crude that % takes three sections model,
which also needs improving.

This work gets the help of Professor Wu Rongsheng. Professor Zhao Ming takes part in the numerical
calcutation. Here, 1 would like to express my thanks to them.
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