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ABSTRACT

Prablems of instability of rotating atmaspheric motions are investigated by using nanlinedr governing eyuations
and the variational principle. The method suggested in this paper 15 universal fot obtamng criteria of instability n ll
models with all possible basic flows. For example, the model can be baratropic or baroclinic, laver or continuous,
quasi—ecostrophic or primitive equatians: the basic flow can be zenal or nonzonal. sleady or unsteady.

Although the basic flows possess a great deal of variety, they all are the stationary points in the functionat space
determined by an appropriate invariant functional. The basic flow is an unsteady one if the conscrvation of angular
momentum is included in the assaciated functional.

The second variation, linear or nonlinear, gives the criteriz of instability. Especially. the peneral criteria of insty
bility for unsteady bhasic flow. orographically disturbed flow as well 4s nongecstrophic flow are first obtained by the
method deseribed in this paper.

It is alsa shown that the difference between the criteria of instabilnly obtained by the linear theary and our
variational prineiple clearly indicales the importanee of using nonlinear governing equations.

In the appendix the theory is extended o cases such as in a fi-plane where the {luid does not possess finite total
energy, hence the variztional principle can not be directly applied. However, a generalized Liapounalf norm can still

he oblained on the basis of variational consideration.
I INTRODUCTION

Hydrodynamic instability including the insiability of atmospheric motions as one of its
parts is a classical but difficull problem. A well developed method for the study of this prob-
lem is to solve the generalized eigenvalue problem of the corresponding linearized equation or
equations, However, this method usually is suitable for zonal (parallel} and steady basic flow
(see Lin. 1953). In the case of nonzonal but steady basic flow Arnold (1965} suggested a pow-
erful variational method for obtaining criteria of instability. However. the general criteria of
instability which have been found so far in-the literature are only for the curvilinear and
steady basic flows in the two—dimensional nondivergent or geostrophic model (Arnold. 1965;
Dikii, [965), or threc—dimensional geostrophic model with isentropic bottom boundary
(Blumen. 1968). No general criterion of instability has been found for the three—dimensional
primitive equations neither by the variational method, nor by the linearization. Moregvet. no

U This work has been presented at the Seminar on Large—Scale Dynamics. Kyoto, August 1986, and at
the International Colloquium on Nonlinear Aimospheric Dynamics, Beijing. August 1986, An ex-
tended abstract has been published in Proceedings of International Summer Collequium on Nonlinear
Dynamics of the Atmosphere, Science Press, 1986.
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general method has been developed, hence no general criterion of instabitity has been found
for unsteady basic flow of any atmospheric model.

In order fo fill this gap we have developed 4 peneralized variational method based on the
Arnold’s one. Our variational principle is universal for obtaining criteria of instability in all
models with all possible busic flows. i.e.. the model can be barotropic or baroclinic.
quasi—geosirophic or nongeastrophic: and the basic flow can be zonal or nonzonal, steady or
unsleady.

Note that the linear theory of instability is referred to the linearized equalion (or equa-
tions). while the variational method is based on the nonlinear governing equation (or equa-
tions). and therefore, the theory developed by the variational method is referred as nonlinear
one. which can be applied to the studies of stability properties of small perturbations if the
Liapounoft’s definition of stability is adopted. Besides, the variational method can be alsa
applied Lo the studies of stability properties of large amplitude disturbances in some paticular
cases.

. GENERAL THEOREMS FOR THE TWO-DIMENSIONAL QUASI-GEOSTROPHIC MODLL

The governing equaiton is the conservation of potential vorticity (or vorticity in the
nondivergent model):

%*F‘qu=0. (2.1)
where X
f.;
g = A — kb + 2eocosh, (2.2
@24
?:iﬁ' _ 0;'{ N ‘tlw_ N
F=0 asinfics, e (a? ) @3

¥ is the stream function, ¢, the mean geopotential of the equivalent free surface. f; the
mean Coriolis parameler, o the Barth’s angular velocity. §7 and A are the gradient op-
erator and Laplacian in the spherical surface with radius a respectively, x=0.1. x=01isthe
case of nondivergent model. Orography is omiteed first for simplicity,

From (2.1} we have conservations of Llotal energy, “generalized enstrophy” and angular
momentum. Therefare. we have an invariant functional (function of ¢, depending on an arbi-
trary function @ and some parameters r,, +# and ¢ )

) ;_? . . 2
1(¢)=H {rﬂ[l'f‘ +rE t!f] +r Qlg) + r{sinﬂ%‘g - ;c”i a,bcosﬂj”ds
Jo L @ Lo ey

= invariant, 24
where the integration is taken over the whole spherical surface. The functional [ is the ex-
tension of Arnold—Dikii’s ane which in turn is the degeneration of our I by taking r,=0.
Later, we can see the importance of this exlension. In other words, the conservation of total
angular momentum plays a particular role. although it is a functional of first order unlike the
conservations of total energy and generalized enstrophy which are of second or higher order,

Giving a perturbation dy. the first and second variations, &f and 8°1, and the differ-
ence i + dgr) — Kb} are obtained afler elementary calculations as follows:
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a‘;:” {—jr0¢+r]Q’(q)w'—r:azsinﬂ}rﬁqu. (2.5)
5
;7 b ? fé 2 oo 2
0= ) Sry| '8V RSO0 |+, 507 @Ng) pdS. (2.6)
Vs P -
Ky + o0y — Iy =8+ 8 T+ . (2.7)
where Q'(q}=iQ.and Q”:i,Q . and
d({ dq“ .
g+ dg)— ) =al+ A7 (2.4

by the use of Lagrange formulation of truncated Taylor series, where

. ) p 5| . .
A= ” {rn[ﬁﬂ' + xj%(cw)'] + 7‘ 2tg J{éq)'}dS. (2.9
h (pg
g =g-+r dq o<r <L

AT differs from &7 in that. 0"(g) is replaced by ©"(¢"} . We assume that ihe proper-
ties of the flow (4 + @,V +46v. and g+ dgy all { L, (see Zeng, 1979), and both /
and A*J exist.

We have the following theorems:

Theorem 2.1  Every function {4 — iof) which is a solution to (2.1}~2.3) {propa-
gating wave with a constant phase angular velocity ;l[, ) s a stationary point of [ in the
functional space . i.e. d/=0, and the phase angular velocity ,'i(l =—-r,/2,. Thein

verse theorem is also true.
Proof If ¥(f,7—4,r} is a solution to {2.1). we have Cq/ér= —7,0q/7 74

= J(},“azcosa. g} . where J( , ) denotes the Jacobian on the spherical surface with radius

«. Hence from (2.1) we have

Jiw + 1 a coshg) = 0. (2.10)

This meuans that & + f.ua“'cosﬂ is an arbitrary function of argument ¢ and vice versa, suy.

b+ hga costh = O1g). 210
Let r Qlg)=0ig)ie
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and }.ﬂ = —r. S 2r

.where r, 0. from (2.11) we ohtain

=20 e Q) Hrya’cosd =0. (2.13)
Therefore, 37=01is satisfied. The theorem is proved.
Now we prave the inverse theorem. Giving a . we have (2.13) satisfled if 8/=0. Tak-
ing Jacobian upon {2.13) and ¢, we obtain

Ji ‘Ernl,'/+r'3a:cosf). gr=10. 2.14)

This equation is transformed into (2.10) by taking i” = —r, 2, il 0, hence ¢

= 10,4 —,'Zn ) 15 a solution to (210 M £, =0, from (2.14) we obtain that g and ¥ are
functions of @ only, hence 4 is also a solution to (2.1) with phase velocity equal Lo every
arbilrary constant ’i‘u ;

Note 2.1 If cither r, or #; is equal lo zero. the flow delermined by the slationary
point of I is a zonal one, and even a solid rotation as r.=0, that is ¥ = —az.f,:cosﬂ.
where )'._‘ is a constant {the angular velocity). The case ('(¢g)=constant is equivalent 1o
r,= 0. However, if and only if 0, the flow with 8/ =0 is unsteady one (with phase angu-
lar velocity 4,550 according to Theorem 2.1. This means that our theary can be applied to

_steady as well as some unsteady basic flows by laking the conservation of total angular mo-
mentum into account in the functional /. but Arnold’s and Dikii's theory can be applied only
lo the steady basic flow.

Theorem 2.2 A {basic) flow (0. — /"LOJ) determined by 4/=0 with a function Q(g)
and parameters r. s and r, is always stable with respect 1o every of those small
perturbations &y whose 1 "¢ )/ 2 and r, both are either non—negative or nen—posi-
tive everywhere in the fluid: and the stability holds with respect to every perturbation if
£ 0%y as a function of its argument  x always has the same sign as r, orisequal to
7ero.

Proof  As the condition mentioned in Theorem 2.2 is satisfied. we can take IA" L ora
simpler one.

o

A »
ror==l sl + [r | 18V +
@

n
2
Z

Sl = Cldgl ”. (2.15)

|

as a Liapounoff's functional. where the norm . - s simply taken in the L. space,
Il isanormina Sobolev’s space. and 0", is the lower bound of 1Q”(¢ "], that is

0% ey 207, (2.16)

and dpeS  denotes the sub—space consisting of those perturbations which satisfy the con-

dition mentioned in Theorem 2.2. As a/=0.and J(p+oy) and X} are twb conservalive,
AY s also conserved all the time ¢, 0 < ¢ <<oe. Moreover, or a given perturbation  dy CS,,

we have lAzll 2z ol u Therelore, if the initial perturbation 5;(1(0:' ES, s small enongh

thatits A S <o Lie
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i 7 : :
A= e g | - 6T
Py
[’1 A
+ 7” Qg T Mdg ) ds <é, (.17
5 |
we have
Sl <[aT1" <8, (@<i<ox, syes)), (2.18)

and the basic flow ¢ satisfying &/=101is stable with respect to perturbations dypes .

If »Q“x)} asafunction ofits argument x always has the same sign as r; oris equal
1o zero. the sub—space S, coincides with the whole space, therefore, (2.15) and (2.18) held
for every &y, and the basic flow is always stable with respect to all perturbations no matier
whether their amplitude is small or finite.

The geometric situation of (2.18) is illustrated in Fig.1.

12,1550

AL sl

ik é‘u v

Fig. 1. Geometric represeniation of |5w1|i_ and IAZIMr .

Note 2.2 The smaliness of A*7"" means that the L, normsof &y and its deriva-
tives of first and second orders, 8% and dg, all are necessarily small if rQ"{g” 1¥=0. This
indicates the important role of vorticity in the instability properties except r Q3"(g)=0 (the
basic flow is a solid rotalion). As £Q"(g/=0. g is not included in the norm &y,

but

s

bl 2 f; 2 2
sl =181 =|r, | e Iyl + 157 (2.19)
0

is also a norm in the whole space g€ W', and conserved all the time 0<¢/<oo . Even in
this case we can also prove the conservation of || 3¢ 1l , although the boundness of ' dg | for
all 7<oe is not necessari'y required in the definition of stability. In fact, we have the conser-
vation of angular momentum of the perturbation,
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0

: a'f
M EU l:sin ‘}?Q - > cost) - 6w}dS=éM(m, (2.20}
5

due to the linearity of angular momentum, and the conservation of total potentidl enstrophy

~

1q+5q2=|lq||2+2JJ goqdSs + | dgll” . (2.21)
g

Now, the first term on the right hand side is conserved, and for a basic flow represented by 4

solid rotation we have .
. [ S
g ={2.l_[l +—Da‘j| +2ru}cosﬂ. (2.22)
x 2(19(]

hence, from the conservation of &M and (2.22) we obtain the conservation of the second
term on the right hand side of (2.21), (see Zeng, 1979). Finally, we obtain the conservation of
Il dg 11, i.e. the last term on the right hand side of (2.21).

If 0”,=0 but r,Q7(g)30, the boundness of 1| 3¢ ? can alsd be inferred from the
conservation of total potential enstrophy (2.21) by using the inequality

logl = lg +q) —qll < llg +dg + Lql. (2.23)
although the smallness of 1| d¢ Il for all t <oc can not be guaranteed.
Theorem 2.3 A flow ¢(f.1— ’:'0 t} determined by &7/=0 with a function Q{g)

and parameters r;, r; and r. might be unstable if either the sign of r, is opposite to that
of nQ%g")., or Q" Isasign—nondefinitive function of its argument in the fluid.

Proof The conditions mentioned m Theorem 2.3 are necessary for the instability,
otherwise the flow is stable according to Theorem 2.2,

Note 2.3 Foragivensetof ry, r, r, and Q(x) , there might be several solutions to
equation (2.13)if Q'(x) is not a linear function of its argument x, and therefore, we might
have several basic flows determined by the same set ( ry, r,, ro. and @(x)) . Suppose that
one of them, say, y,, (#,4,1), satisfies the following conditions, (i) its &I isa sign definitive
functional, and (ii) Q"{g,+5q) is also a sign definitive function il |5g| <e. but a sign—alterna-
tive if' |dgl <& is not satisfied, where ¢, is the potential vorticity of flow ¢,. The lunc-
tional ff,v,q) (e, complicated functional f(¥)) reaches its local minimum f, (f
82> 0) or maximum [, (if #7< 0) at the point ( ¥,.V,.¢,) in the dense subspace

{ ¥, +y, ¥, +3d7,q, +5g ), where ( dy.5v.dq) all © C™. Perhaps, , is stable with re-

. . . o
spect Lo all small enough perturbations whose initial 3¢™ satisfies ’r‘iq* )‘ <& <z, and a

transition from the vicinily of ¥, to the vicinity of another basic flow, say i, might occur

by the action of perturbation whose ;éqm] | is not bounded by .

IIl. INSTABILITY OF LINEAR AND NONLINEAR HAURWITZ WAVES

A whole family of Haurwitz waves can be obtained by 47=0, i.e. determined by equa-
tion (2.13).
Theorem 3.1  Linear (classical) Haurwitz waves,
frd - A 1)

b=, = —a i cos0+ ¥ A4, P (coste™ ", 3.1)
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are determined by 8/=0 with linear function r,Q"(q)=2b,g+h), where P: (COSB)GWJ' are

normatized spherical harmonics. 4, (m=0,1.....,n Jare some arbitrary constants, and

an =5, /ey +byfy /0,
1& :[2w+a2r2./2bl]_/|n(n+1)—2]’ (3.2

’:'u =4 -2w+ ;,__[n(n +1) =21 4 {an+ 1)+ xazf; St
n=23..)
The prool of the Theorem is directly made by substituting of (3.1) and (3.2) into (2.13).
Note 3.1  For a given linear function r;Q"(g), there exists a solution to (2.13) only
if ry and b, satisfy the following conditions

oo _ MH&}
b, az @y '

(3.3)
n=234..

This means that for an arbitrarily given function » ¢ and parameters r, and r.,
there is not necessarily a solution to the equation &7=0, i. e. functional 1 might not have sta-
tionary point.

Note 3.2  For a linear Haurwitz wave determined by (3.1). we have

A"I=<52:=r0” {[Iavl2 +h~§ (51&)2]———@%}a‘5=invarianl, (3.4)
s ¢ nr+1) n KJLO_

a Do
where &y. '8v] and dg can be not small, i.e., the disturbance & can be a large
amplitude one_ Therefore, according to Theorem 2.3, we have:

Linear Haurwitz wave might be unstable, or, at least metastable.
Hoskines (1973) and many others have shown that linear Haurwitz wave

b= '} cost+ A, P icosthe™ " (.0
can be stable or unstable with respect to the perturbations represented by maximuomly trun-
cated series of spherical harmonics, depending on the amplitude 4, the wavenumber m of
the Haurwitz wave and the wavenumber of the perturbations. However. the question on the
stability of linear Haurwitz wave in the general case, i.e. when the perturbation posses infini-
tive degrees of freedom, is still open.
Now, denoting the energy and potential enstrophy of the perturbation by £ and P,

ie,
.

.y 2 f_ - 2
Hswl® + k= 3yl )
Py

b [ —

P

]P’ lag1”,
we can represent P by E' as follows (see, Zeng, 1979),

{3.5)

1
2
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P'=—N E. (3.6)

JV é I
_lr =9 d
(1-FE =5 (37
where
N, =n(n 1y ta wf, 79, 3.8
N, En(n+]}+azrcj’f] Ly, 3,

and #, is the weighted mean two—dimensional wavenumber on spherical surface of the

perturbation. (3.7) tell us, that (i), if the initial mean scale is larger than that of basic flow, i. e.

nf) <n.wehave &7/ 2r,>0 and n,<n all the time. Therefore, when energy descade. i.e.

np(z} <nf] takes place with the perturbation. its energy £'{1) andlpotential enstrophy
P(¢#} both decrease, 1.e. £{1)< E(0) , and P()< P(0) ; while when energy cascade
m,(1)>n) takes place, both E() and P(5 increase. (i), if n) >n we have
&I/ 2r< 0 and n(f)> n all the time. Therefore, E'(/)<E'(0) and P{(1)<P'(0) as

np(:)>nLD). but E()> £(0) and P{1)> P(0) as np(t}(n;m . These mean, that energy
and potential enstrophy of a perturbation always synchronously increase or decrease. This is
quite different from that situation when the basic flow satisfies the sufficient condition of sta-
bility. In fact, according to the linear theory (see, Zeng, 1983) or the conservation of A
represented by (2.9), a mutual compensation between emergy and weighied potential
enstrophy of the perturbation takes place as the basic flow satisfies the sufficient condition of
stability.

From the above analysis we conclude that Haurwitz wave (3.1) is stable with respect to
©
r
>n as &8N0/ 2r,<0Q , bul unstable with respect to all other perturbations. In this sence a
Haurwitz wave might be referred to as metastable one.

Note 3.3 We can find out upper and lower boundaries of E' . Suppose that a basic
flow is a Haurwilz wave given by (3.1) but rewritten as %, and a perturbation is given by

¥ whose initial ¢ is orthogonal to ¥ {denoted by ' 1™y and angular mo-
mentum M= 0. Otherwise, if there is any component ~paralled” to §" (denoted by

v 0 " ; @ . .
! "), wecan subtract ¢ from ¢"™ andadditto ¥ . For convenience we write

those perturbations whose np(r} <n;m <n allthetimeas #°K(0)/ 2ry>0 or ", (t)y>n

=y ote (3.10)
and lf/"[‘?] =0 . Hereafter, we will denote an integral of function F(6,4) on the spherical sur-
face as <F >, for example, Lp":" =0 means

<a;([])w.'((]|> =0 (3.1 1)

The conservation of energy of disturbed flow ¢ = + ' yields

e mmwes e see—t— g
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E(J+¢’):E+E’+<vwév@’ﬁ%%’)rza‘”’,
0

and

E+{§ -y + k“g—“ vy =" -E=p", (3.12)
Q

where E is the energy of the basic flow. The segond equality in {3.12) is obtained by the use
of (3.11). The conservation of #°f andthatof A’ 'yield

) b

,_i ,:53110-1= C,
E N P 3, (I¢T,b E, (3.13)
Bt af
M= ging — et sty = M7 =0, (3.14)
of Py

Now, possible maxima or minima of 'E'under constraints (3.123,(3.13) and (3.14) can
be determined by the Lagrange’s method. ik, by 8J=0, where

J=FE+1, {E’ +{FF Y+ K:;i w’>}
0

).I{E" —ta" /N, }P’} + A, M (3.15)

and 4. 4, and 4; aresome constants under determination. After elaborated calculations
the upper and lower bounds of E'. denoted by E', and E', respectively, are determined
by the following

L L
o 1] - S =(F ’
E (1+A;)A DI, FE ), (3.16)
PN
. by 2 o, \
.E, (IT}._;)[A +0, =(E", + £ A )i 3.17
g = 2 _Az (.18)
ul 1+, iy ! ’

where £, and £, are the energy of components orthogonal and parallel to the whole
family of “pure” Haurwitz wave (3.1) with )'.: =0 respectively.

2 1 i 2
A :ii\,rh Z:F"Aml . (3.19)
’ NN)
[1‘ 2 ] ng:[l—x;’— EY, (3.20)
J;\b wt N B
01 AN
O RO PO | (3.21)
1_‘_;,[ : AZ k -
,(0) _ 2

1
(’1‘ ) 1 (1 £ D“)i (3.22)
=1- +— ], .
l+'11i A°

btk b s b 24 A -~
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N =n'in"+ l)+;{a-f—; ,"(;)0_ (3.23)

. PR . W
and #' is an inleger. Depanding on n, >n=nor<n we have #'>2c,=n or =|
]

respectively.
If £/ 4«1, wehave
Fo-E" s, cad’, (3.24)
and,
01, (¢
o {E,m} n;){n;)Jrl)—Z N o)
EY B Alr +1) -2 S BN (3.25)
L.'-:E’m), (”;D) >n) v

where &>0, and O(£J=O(E"D) /Az).
{1.24) shows that

W'x - 20F +a s cos).

This means that the basic wavy flow might complelely be distorted, and  just has a phase
angle opposite to that of ¥ . While, (3.25) shows that by using the nonlinear equation there
is always some energy kept by the perturbation.

The results obtained above are illustrated by Fig.2.

Fig. 2. Evolution of energy. £, and patential enstrophy. P, of the perturbations superimposed on linear

Hourwitz wave. | E', and LB arc the lower bounds of the perturbatian energy corresponding to 87 f 7 Ir >
and 777 i, <. respeclively; and E' - E'"™ x~44°, 2and & denoic the directions corresponding o

n_ < ::“ and n, >n::1) respectively.
Al the end we point out that nonlinear (generalized) Haurwilz waves can be determined

by (3.1}, where '(g) is a nonlinear function of ¢. They might be stable or unstable de-
pending on the conditions stated in Theorems 2.2 and 2.3,

[¥. THE INFLUENCE OF OROGRAPHY ON THE STEADY FLOW AND ITS INSTABILITY

[f orographic influence is laken inte account we have the same equations (2.1 and {2.3).
but instead of (2.2), now we have

M

f Foe,
g =AY — K- + Qucost + =), (4.1)
(PQ (p(]
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where @, is the geopotential of the orography. The total energy and generalized enstrophy
are still conserved, but in general case the lotal angular momentum is no longer a conserva-
tive integral. Therefore, we can take [(y) defined by (2.4} as an invariant functional but
with ry=0, and, consequently, (2.5)—(2.19} stilt are all valid but with r,=0 and ¢ defined
by (4.1). We have

Theorem 4.1  Every possible steady flow over the topography h,=¢,/ g s deter
mined by the stationary point of /. i.e. by the equations

{ —2ryytr Qg =0,

.g(nD,- (42}

] g = Ay — h‘%lf! + QCuwcost? +j(p

Q )

The stability or instability of such flow with orographic influence can be determined ac-
cording to Theorems 2.2 and 2.3.

Theorem 4.2 The steady disturbance generated by the orography and superimposed on
a zonal flow with constant angular velocity .i: (solid rotation) exists and

is unique if O=¢ and r,=0 are taken in 1. and (xf; Sty /rl)az # —n(n+ 1)

#=12_.. where r,/r, Isdetermined by

o [ae ()|
-4 =2 (24| k— +—)a , (4.3}
- . P 5

The flow is stable 1 v,/ r,>0.1. €.
Lot A
(H—x—n a') <= <0 (4.4)
2i, ©

and it might be unstabie if condition (4.4) is not satisfied.
Proof Taking "@=4. ihe governing equation for the steady flow is determined by
df=0 as follows:

rgor fo (@
A=+ Y= -2 sn-l(—‘—). (4.5)
(4o e L

D) 1
whose solution consisting of zonal flow with constant angular velocity ;1__ and disturbance

F generated by the orography is

b= —a i_cosh+F, (4.6)

where /‘i__ is given by (4.3), and F satisfies the following equation

AF*(K& +L°)F=--fi(?f—) @7
Py N oy \ Sy

Therefore, & is uniquely determiend by g, . provided fi('_fﬁ St ST a #

—nln+ Yy n=12,". .
Next, according to Theorem 2.2, sufficient condition for stability is satisfied,

b avma vt M RN s AMsea ammatoh i T AN S K- et
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provided {r /r, )aj 2 0. In our case,

Fooo» fia
La = —(2 4 +_cg)
ry @, ‘.

and {ry / r]}a3>0 results in (4.4). Theorem is proved.

Note 4.1 The conditions
fo o
(xi )t = — e 1) =120 (48)
(‘D(\ }‘|
correspond to the resonant cases, which can occur only if ;1_' >0 (westerlies) in accordance

with (4.3). For a given n, which satisfies (4.8), there exist solutions {o (4.5) only il

ol fz @
J -[ [chosﬂ + (—" } ]P:’ (cos0ie™ dS = 0. (4.9)
s . ®, M

m=012,"n,

and the solutions consist of forced and free wave parts represented by arbitrary combinations
of spherical harmonics with the same # .

Note 4.2 It seems that the orography might not influence the instability because
@, does not include in the criterion (4.4) for stability. In fact. this is not true because in the
absence of orography the solid rotation can be obtained by taking r =0 but r==0 and -
r# 0, hence it is always stable in accordance with Theorem 2.2. However. sinularly Lo
Haurwitz wave, the wave-like basic flow induced by the orography embedded in westerlies
might be unstable.

Note 4.3  In the real atmosphere 1 + (fi £ ?_gp[')a2 2 3 | Therefore, the orographically

induced steady motion superimposed on uniform westerlies or easterlies with angular velocity
0>i >—w/3 is stable, and might be unstableas . >0 or 2 < —w/3

V. GEMERAL THEOREMS FOR THE THREE-DIMENSIONAL QUASI-GEOSTROPHIC MODEL

The governing equation is the conservation of potential vorticity written in the same
formas (2.1). but ¢ isdefined as follows:

3 A
2.7

eI ‘
q:Aljf+:(;(Oi:—(:l’g)+ 2wcosf, (3.1
288 e [
where 01, o' =aRT. 2= Riy, =% g 7, =8s¢c,. T{zy and 7 are the mean

temperalure and its vertical gradient respectively. 1 should also salisly two boundary con-

ditions (see Zeng, 1979):
E <x, (3.2)

(% +rT, ‘V)b=0, (bf(%) +KD€_‘.I,£'_‘). (3.3)

where £ is total energy (see below), the subscript s denotes the function given at the boitom
boundary {= 1. the orographic influence is omitted, x and x'=0.1. k=0 corresponds to
the approximation of vertically integrated nondivergency, and «'=0 corresponds to

et mm e el
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isentropic bottom boundary.

From the conservation of potential vorticity and the boundary conditions (5.2) and (3.3).
we have conservations of total energy £, - generalized enstrophy™ F. angular momentum
M and the “generalized boundary energy” £ derived from (5.3) (see below). The invartant
functional J{i) suitable for our purpose is a linear combination of all the conservations men-
tioned above with some parameters r, , n=0,1,2.3,

fp) =2r £+ r F+r M +2r, B=invarianl, (5.4
where
o j’loc? sl 1.8 b
Es:Jj {K—L,—w‘ J lgw!® + (‘ %“i) dl pds. (3.5)
s e ¥ . [
S N a
ol
F *“ | ownas. (56)
5 +q

2

) —“ { L, +} 1'Aasin3a'i}d5. 7
5 ‘P.~ a
Bsﬂ GLb)dS. (5.8)
5

and G isanarbitrary function of argument 5.
Now, the first and second variations are as follows

|
5;:” ( [ ~ 2t Q)+ r_,a"cosﬂ]aqd-:ds
by

v

+J.J {r G(b)+ o Cr i, —rjajcos(?) }I:—-Q) + ra 5:}1:| . (3.9

U { [Vmﬁ'( +(/“ ix}ﬂg"(qxaq) }d ds

+H s

W, ) + "(b)(éb)"}ds. (3.10

oy + 8) — () =81 + A° L. (5.11)

" ol
A:1=JJJ { [anl +f ‘—“i ]*r;Q”(q')(éq)'}didS
Sy - .

- ‘{-’m
SIREE
5

G"(b }ahy } (512
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q*:q+r'dq. 0<r <L
Bo=h4r EAE
Thearem 5.1 Every function Wil . — ‘:“n" Iy which Js a solution of  the

three—dimensional quasi—geostropic model (5.1) and satisfies the boundary conditions (5.2)
and (5.3} is u stationary point of ) and satisfies the following equation and boundary
conditions:

S 2r g b, Qg+ raacosl = 0. (5.13)
FE <, {5.14)

. fo o >
r‘G'{h).*T(Eruzyt —r.d cosfl) =0, {5.1%

[&

N

‘o)

where ¢ und 6 are lwo given Tunctions and », are some parameters, #=0,1.2,3. The
phase angular velocily «, = —r, / 2r, . The inverse thearem is ulso true.
The proof of Theorem 3.1 is essentially the same a3 that of Theorem 2.1,

Theorem 5.2 A three—dimensional basic {Tow  y{th./. — .'{U {, I) which is determined by
df=0 with functions Ng) and G(h) and parameters r,, (n=90,12,3) is always stable
wilh respect to every of those small perturbations dw. it r . r @'ty Y Fakat f c‘ and
riGU(h" ) all are either non—negative or non—positive, and the stability holds with respect to
every large amplitude perturbation if @'(x) and G”(x) as functions of their argument v
are also sign—definitive or equal 1o zero.

Theorem 5.3 A Mow i 7 — A4, r, ) might be unsiable 1l either r,. r Q7

rowz_ < c.and r G do not have the same sign or one of @ and G i3 a

sign—nuondelinitive function of {(#1,2.5.1).

The proof of Theorems 5.2 and 5.3 is also essentially the same as that of Theorems 2.2
and 2.2, bul with three—dimensional norms, |l .' ; in fs,—space and |l .' ., in Sobolev
space. Similar to (2.15). now we take

2 . P L . ey ? ool
‘S’“l:..- __}rn}‘_m“{ ' \|r)l,'l)\| + irlcf w | ! +|Fc|| ' ‘\-x‘)‘;’“s
Ll -
1 o e ol
+ El’ o8 m" Jr\)t/HV,, (5.16)
where .7 is the same a» defined in (2151 i.e. detined on a spherical surface with radius .

and 1Q"'M| and \(1'”"' are the lower bounds of |Q”(q' 1 andl |G”{fv'}|

respectively. i.e. |

oL 20,

< . (5.17]
I ™y 26,

Ay

Lol isa pseudo—three dimensional operator,

\“sawsvo‘wﬁ("{) Loy (5.18)

g
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and itsnorm {7 dik [l ¢ is delermined as follows.

: S L E T R ST
gl = Tap 4 j(—‘—(% = vy + 1 (5.19)
) . L ) : o &
We have
lowl: <la™ i wsr<=x) (5.20)

(1}

i;". <d all the time as ‘Azl F<<5.

Therefore. |8

The geometric representation of Theorem 5.2 18 similar to Fig. 1.

Note 5.1 A whole family of Haurwitz waves in the three—dimensional baroclinic at-
masphere can he determined by &r=10, and we have the similar results as in Section 1H. In-
deed, such baroctinic Haurwiiz waves have given in the literature (see Zeng. 1979).

Note 5.2 The criterion of instability obtained by Blumen (1968} for the steudy basic
flow and the quasi—geostrophic model with isentropic bottom surface is obvieusly a special
case of our general criterion. Thal criterion of instubility obtained by Blumen (1978) and
Zeng (1983) for the steady und zonal basic flow and the linearized model without the assump-
tion on the isentropicity of bottom surface is ulso a special case of our general criterion. How-
ever il is necessary to point out that the general criterion of instability for an unsteady busic
flow can be obtained only by eur generalized variational method with r, # 0.

Note 5.3 When orographic influence is taken into account, the conservation of paten-
tial vorticity as well as equations (3.1)—(3.3} are all valid but

bE(%@Jﬁmeﬁn +a f, lw\. (5.21)
where Z (f. i)=¢ (0. 2}/ g isthe clevation of the orography. The conservalion ol angu-
lar momentum is na longer valid. and we have results similar to Sectionl¥. Theorems 5.1, 5.2
and 5.3 are all valid but with r.=0. hence steady flows generated by orographic influence
can be obtained by d/=0. and the arographic influence on the conditions for stability are in-
cluded in G*(#) explicitly and in such a manner as described in Note 4.2.

V1. HAROTROPIC PRIMITIVE EQUATIONS

Governing equalions are exactly those as for the shallow water bul writlen on i rotating
spherical surface. They can be transferred into the follows:

(m‘l’” (.!K

— o= 61
o P4y, e {6.1)
v oK

gy = - ———l 6.2)
rf P4V asinficz, {

A

:"ﬂ; Y Tg=0, (6.3}

where

< n

K:go+l;[1‘; +1-;). (6.4}

JURSCRPESSEpPI SN S
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1 | fr sind @y,
g = ‘(’5 Y, T + Zwcos(! (6.3}

and ¢ Is the geopotential of the free surface. It is not difficult to prove that equations
(6.1)=(6.3) are equivalent to those commonly used in fluid mechanics and dynamic meteorol-
ogy. In fact the continuity equation

.
;ﬂ, + T er =0 (6.6)

can be easily obtuined from (6.1). (6.2) and the conservation of potential vorticity (6.3).
7 ( } in (6.6) is the two—dimensional divergency operator on a spherical surface with
radius a.

Again we have the conservations of mass, angular momentum. energy and generalized
enstrophy, and can construct an invariant functional as follows

2I(¥, g’))IZrOE‘I-rIF+2r3;\4+r]M’a, 16.7)
where )
Egiﬂ [ol ¥1* + 07 1d5. (6.8)
2 /s
F= “ ©0QLg)dS. (6.9)
5
M= jj wa(r, + awsin)sindds, (6.10}
N

M’aEJ‘J‘ @d S, . (6.11)
5

and Q(g) isan arbitrary function of its argument g¢.
g is a function of ¥ and ¢. For convenience we denoie the difference between

giv +8v.p+dp) and g(v.e) by dg .ie,

dg = g(¥ + V.0 + doy— g(V.e)

v sind) 8y 5
- ! S | B 6.12)
@ + S| asind ] 4 @+oyp
We have
Gg=0'g+5 q+.. {6.13)
and : .
dg=0 g+Ag. {6.14)
where R 0 s
fdv s Fdv 5
ilge L AT PR (6.15)
wasini) o) Cr ]

5 ] [Eov sinf  Cav, s dg .2 g . o
=~ - + = - s'g. (6.16
o g asinﬂ( o i g éi'( © ) ((P } o )
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A2q=f5q—5'q=‘l‘£[ 1y

@ @+ dgp " asin!
cdv sin  Cév 5
z _ deop T 1 B
a0 3 ) +qw+é¢] (=%) dg. 6.1

By using formulas (6.13)—(6.17) we obtain the first and second variations of functional
I as follows,

281 = J‘J {I:ro(lgp + | 17|3) +2r, (v, + amsinf)gsinf +r (Q - g2+ r;:|5<p
s

asinféd

252]:” {["o[‘ﬂ’érlz +(0p)" + 2007 - ‘ir} *’I[Sze Qs ' + Qlaked’y
5

+ 5cp5]q}i| + Zr:adgocﬁvzsinﬂ}dé'

J.J { om[m v, +a’ﬂlﬂﬂ)£:| +r0qa[5v" + vﬂ%g]
(v, +ar ' Slnﬂ) +1 R ? o ] 3
(1 N ) dp | +ri50%g) ¢ ‘I] ds. (6.19)

The difference between (¥ + .:Sv, @+ dp) and f(V.e) isgiven by

[ 2@v, +r, Q"—q—] +[r02¢1.-;_ + 2, pasint — Q”—“L:]L’—II-"_}G'S. {6.18)

v+ 07, o+dp) ~I(F, o) =3I +8 I+, (6.20)
or

KV + 07, +80)— KT, @)=58F+ AL, (6.21}

2A21=” {ro[cp' "5V +(Be) + 28007 - m]+r [ 0" NoqY
5

+ ch'(q)Azq + Q'(q)étpciq:l + Zrzaﬁcpﬁvisinﬂ}ds

=JI {rn(p‘ |j5v +r, +ﬂ'f‘wl",) Siﬂ(})—&%}
5 4
+ruqu“|:5l’ﬂ+lf'0¢5,¢, ] +r]f.0 Qg (qj[dg]

TN 2 )
(v, tar,r, sinf} +v -
+r3(1— e L] g | pdS, {6.22)
P

. (o  =@+de.q4 =q+r dq. 0<r <1
(6.22) differs from (6.19) in that the coefficients, ¢ and "9 . in the integrand are re-

ke o i vt

e 1 A e - i
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placedby o' " and Q"(4°) respectively due to the lact that
(o= 0oy v+ a7 = (@ +apul ¥l +2v - av+ oyl = ol ¥l
+[irfa@+zwr-av}r[zdtpv-5?=+q.:" ar-lz]‘
. ) . . . | N T
(o +dp)g ‘f‘q)—(rﬂ+f>w)[Q(q}+Q’(4J0q+:_Q (g Mdg) ]tc.nQ(qJ

. N . a1 . . | .
* [Q(qlow +oggld q:! + [mQ‘(qm g+ @lgedg ~So Oy (gl }
Theorem 6.1 Every propagating wave solution set (v (0,2 — A P P I N
- ;.,_, ol — ,'1“ 1) 1o the primitive equations (6.13—(6.3) corresponds (o a stationary point

of {74 inthe functional space (v,?) , und is determined by the following equations:

r,
b= Er”[K + r_ asinfi{v, + amsin!l}:’ = —r {0 —q@—r,. (6.23)

4

‘P
wgr, = PSR {6.24)
[N . h ("(D
oy {“l i asinf } 270 { )
The phase velocity }.” = —r,/r, .provided r0. The inverse theorem is also true.

Proof Let (v{0. 2 — ;10!), old, 2 — ;10[)) be a solution to the equations (6.1—(6.3).

Substituling them into (6.1)—-(6.3). taking the relationship ¢/ 1= — }.“ﬁ / @} into account,
we have
wpy VLT T LA -
e K
-4 TL o= P =7 6.27
“u toqv, asinflid ( )
.0
- ;.“::i? +T gy =0 (6.28)
Introducing a function @ by the first equality in (6.23) with r, /r = — ;3,” and r,= 1.
we have .
f-YK . f"‘(D 4 . s 24.
Cath adl Aq pgasind = 4, aAce
N SR . N
asingdi 0 ER asinfis
Substituting them into (6.26) and (6.27) results in (6.24) and (6.25). We have also
N G ( fp @
VOV Gpain T '{0)—% ~\ pgasindds }”%
1 s iy
=-- : 6.29
P Hib, gr+ 4, Y { )

Substituting it into (6.28) yields
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e l A

— (B, g)=1. (6.30
[_‘ . ] (®. 4} = {6.30
Therefore, 2@ is a function of argument ¢. Now. we can determine a l'unction r,(My) by
solving the following ordinary differential equation

[y 10 =40yl -, = 204y). (6.31)
where r and r, areconstants, and r 50, Therefore. (6.23) is also satisfied. The theorem 15
proved.

Now we prove the inverse theorem. Suppose that functions (¥, @) satisfy cquaiions
{6.231—(6.25). Representing ® by K and v, in accordance with (6.23), from (6.24) and
(6.25) we obtain (6.26) and (6.27) with ‘:*n = —r, ¥y

Next, from (6.24) and (6.25} we also obtain (6.29). In additien, the second equality of
(6.23) means that 2 is a funciion of argument ¢. consequently f(®, ¢)=0. Therefore,
from (6.29) we obtain (6.28). All these show that functions (v.p) indeed construct a propa-
galing wave sofulion set 1o equations (6.1)—(6.3). and in =—r, /.

Note 6.1 In order to seek some special solutions e the primitive equations Zeng in
his book (1979) had already oblained equations (6.23)—(6.25) with r,=0 for delermining
steady flows and developed a method similar to solving (6.23)-(6.25) with r,5= 0 for ob-
taining generaliced Haurwilz waves which are solutions ta the primitive equations but modifi-
cations of classical Haurwilz waves given in Section 1L although the variational principle
had not vet been indicated there. Some such solutions can be found in Zeng’s book and Zeng.
Zhang and Yuan's paper {1985).

Note 6.2 Suppose that for a given set (ry. £, - r. and (Hg)) equalion d/=0
provides a solution (¥, @) lo equations (6.1)—{6.3). Repeating the procedure of proving
Theorem 6.1 by using this solution (¥, ¢) we can construct a new function Hg) by (6.31)
but with r,550. This means that we can always luke r, 0 withoul any loss of generality.
Morcover, we can also tuke r,=r, = | without loss of generality, because r; can he considered
as 4 coefficientin ¢, and r =0 s equivalent to g=0.

Theorem 6.2 A flow determined by 6/=0 is stable with respect to those
perturbations subspace whase A“f is either non—negalive or non—positive functional ol
(8¥. 8. dg). but might be unstable with respect to the supplementary subspace.

The proof of Theorem 6.2 is essentially the same s Jor Theorem 2.2 and 2.3. Especially.

if for a given perturbation (3%, d@) Q”lg ) and @~ are bounded from below by
0", und ¢, respectively and satisfy

Q4 120", =0 (6.32)
o T e . - '
\“ o (6.33)

izmd @, =, —ainsin{))2 + ".':J‘
all the time >0, we can take A’/ orasimpler one.

i s 2 . - dip 2 - & K
V.61~ = | Idv. +{v, - ad sind P27+ G, + oy —f{—ll
LR " I A qa L] a °
@ @
o | P .
- Fr Nde” +59, 07 lég . (6.34)

as the Liapounoff’s norm and have
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2

|67.8pi . <A™ 1", 6.35)

where Fr,, isthe upper bound of Froude number

(6.36)

*

v, ~ adysinf]” + v, )
B

Frm=max(
and r=r =1L If Fr,# 1. the uniform boundedness of ||dqo||3,llzil.';+(1-';

—as sind¥e /o I and v, +v,dp/ @ ¥ s guaranteed by {6.35), hence

N

lav, I ' and lév, I are also uniformly bounded because
o . 5 . S0
Sy, =ldv, +iv, — a.&usmﬂ)i, — =, —ad sindy— |l
@ @

Lldv, +iv, - alosinﬂ)i:‘gj I+, — ai(lsinﬂ}i_wf i
@ @

. 8 ‘ L
< 8w, + (v, —a).usmﬂ)'—_goi I+iv, - ﬂ.&GSIDGHL Idell,
i o ('am
8 | .
18y, < lldv, +r, 22 |+ v, 1= 180l
’ i qam
The necessary condition for instability ! is either (a). Q (g ') is not a non—negative
function, i.e. there exists some area where

Qg ) <0. (6.37
or (b). there exists some area where

(r, - u;lu 5in0): + vi
I - <. {6.38)

@
Note 6.3 According to the classification of instabilities for the zonal and steady flow

in a linearized model (Zeng, 1979: 1986). condition {6.37) gives rise of barotropic instability
and inertial instability (symmetric instability s its special case). and condition (6.38) is the
cause of super—critically high speed instability. which was first discovered by Lin (1955) in
aerodynamics and Zeng (1962, unpuhlished paper} in rolaling one—dimensional shaltow wal-
er and then extended to the two—dimensional shallow walter without Coriolis force by Blumen
(1970) and Satomura (1981) and with Caoriolis force by Zeng {1979).

Note 6.4 In the case of zonal and steady basic flow the necessary conditions {(6.37)
and (6.38) for the existence of instability are essentially the same as obtained by the linear
theory hut quantitatively different. Instead of condition (6.38) we obtain

I+ Due 10 a carefulless omission of dgq or qu there is an additional term in the criteria of instabili-
ly in the extended abstract published in the Proceedings of International Summer Collogquium on
Nonlingar Dynamics of the Atmosphere, where one can also find the same error which leads to an
incorrect sufficient condition of stability in the continuous baraclinic atmosphere.
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(v, — a-,i_osinﬁi)2
[ ) (6.39)
@

by the linear theory (Zeng, 1979; 1986) or by the analysis of &°7. Comparison of (6.39) to
(6.38) shows that when @”>0 (while there may occur only the super—critically high speed
instability) the domain of existence of instability is larger than that predicted by the linear
theory. In fact, if the basic zonal flow is marginally stable, a small but negative dp might
make condition (6.38) be satisfied, therefore stability of the basic flow might be broken down.
Similar consideration can also be applied to the barotropic and inertial instabilities. This ex:
ample tells us the importance of nonlinear consideration although the linearization of gov-
erning equations seems (o be valid with respect to small perturbations.

¥I[. LAYER MODEL

Supposing there are J layers of shallow fluids, whose top surfaces, densities and veloci-
ties are denoled as Z, . p, and v, respectively, k=12, J  (see Fig. 3). We have the

lollowing governing equations (see Zeng, 1979):

-

6'1' ] ¥
ﬁI: +7, Ty = aé‘:} + (2ewcos? + ;"ctg@)u}_, (7.1
Ay ﬁqj V.
A - - kA A , ;
& +¥, Ty, = asindea (2wcost? + . ctgdyv,,, (7.2)
&h
k ~
c‘.—r+v.v*hk=0’ (1.3)
k=124,

where h=2Z,~Z,,, is the thickness of layer & ., ¢, the reduced geopotential of the top

surface Z,. ie.
S
¢, = L """ gZ,. (7.4)
i1 P’k

m=0,and Z,.(0, 2} isa given bottom topography.

Fig. 3. A layer model.

This model is a good approximation of the oceanographic motions rather Jhan alinos-
pheric one. However, this model is very interesting because it partly represents the baroclinity.
and hence by the help of this model we are able to explore the mechanism leading to the dif-

el ekt © ot wompt e e« e ek - A, e - £
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ference between the barotropic and the continuous baroclinic atmospheres.
Similarly to (6.1). (6.2) and (6.3), equations (7.1), (7.2} and (7.3) can easily be frans-
formed into the foltowings:

avl‘iﬁ' aKk -
ER —hogv, = T el (7.5}

av 01{',\,
5 P = s 7.6

q . .
& e 90 =0, an
where |
KA’E(‘D.&-E-E‘FA ) (7.8)
1 1 ov . sinf 1ka ) , }
-1 - 7.9
4 h, {asinH (\ @(J [ + Jwcost (7:9)
We have an invariant functional
UG, @) =2r E+ 2, M+ X Fy 7, May), (7.10)
where v and ¢ consist of all components ¥, ¢, , k=12....J ,and
! g P TR 2
g=! Zpk(hk\v” +‘—ﬂMgzk)ds, (711
“ddg Py
M= '”‘ T ap, b sml(v, +awsind}ds, (7.12)
$ L=
F EJ‘J‘ PR @, (g, )dS. (7.13)
LY
Ma, E,”. ok dS, (7.14)
5

0,(g,) is an arbitrary function of its argument and depends on the index & too. and r=0
if Z(8. 1)=0.
Now, we have

i E.‘T {[Johklm‘ tra @, )asmf}t’z }’iv 8
[ 5

iy
[7"0)'1): v, +2r,h, asind —r Q" (g, }aﬁ}dvﬂk
+ [r (Z(p

4

+rl(Qk 'qu;(qk))-i-r}k :Iéhk}pkds‘ {1.L5)

Lt I v, |h)+ 2r, {v,, *+awsinf)asinf?
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E : air, 1 sk’
1= J:‘ Z{"uha ([5”;.;. +U, P’ :l + I:(S"w. T ;{\jl )
s [ ] JI' ]A.

4

L2 2 2
p, P W o, iVl . |¥
+r0g’:( s bes Vel eV ‘)(azj,)wzﬁ-* o‘z‘azH,J

2y gh, oL 8R, ghy

h # 5 1
+?'1kTQQ"’R lg, )(\(5]({‘\ ) }pde. (7.16)

-

a - . . f‘ih“£ ! MI;E -
A= J Z rof, dv, U, — +H Byt )
st h, h,

P, =P, Ve, V] o, vl
+rog[(‘ HRRN — At ')(ozﬁ)'+z—%5zkazk‘l]

z

Py gh,  peh.’ gh,
hf‘ 7 . z
tryy 0 k(qk )(ﬁqk) p,dS. (7.17)
where
I =x + -1 . B i =U‘0" -40. ;
iy Fv, far,r, sinf, Vo o=0vy +AU {7.18)
h, =h, +h,, q, =q,+r, g, 0<r] <. (7.19)

MNote that every quadratic form can easily be transferred into a diagonal one by an ap-
propriate linear transformation. For example. by introducing

dn=X &Z. (7.200
we have
’ P, — P, 0 PN 17 s
Em{[_—;—* — —( ALz ) +
i 2y gh, ek,

7

v,
k|
2 r sz 87,

ghy
where &y and &Z are two vectors,

(BSZ, 62)= T 4, (on,)". (7.20

——t
]

dn= (on, ....,dr{}.,....ét“) .
0L= (0Z, .. 02, 0Z,) |

B isamatrix. pg and X, its cigenvalue and eigen—vector respectively,
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BE{b“_}, (k, ¥=12,..0}) (7.22)
_ | P TP \’7;‘55 Pk—l’ﬂk 1
bk!.: =P, P ( . . P s
k ghy % L P
¥
bk,k+1=bk+]‘k= e P
ky
b;(‘kf:(}a (lk_inzz) s

BX, =-“JX,-- {7.23)

and matrix X consists of J eigen—vectors,

X= [xl ,xz,...,xl]. : (7.24)

Similar to the results obtained in the previous section, we have the following theorems:

Theorem 7.1 Every propagating wave or steady flow solution to the layer model
{7.1)~(7.3) corresponds Lo a stationary point of I(v, ¢), i.e., 8/=0, and vice versa.

Theorem 7.2 Sufficient conditions of stability of basic flow determined by /=0 with
respect to perturbations are (1) r, and ¢ Q"x(gs ) all have the same sign, and (2) all
p0, j=12,..0.

In order to iliuminate the classification of instabilities in layer model and their mecha-
nism, let us take a two—layer model. We have

— 2
{pl P }p |V|[ »
* % l
1 gh] ! gh,
B= .
\IV ol p{-"z_pl 'V P]|V|J }}
hnn 1 2 pz gh;w ngh:w
Mg = %{ a, +a,—5b)) i[(aI a, +b) +4p, Ij } } (7.25)
= h
where '
7 2 |a 2
a = fl-| l,, Yp . o, = (1-—")p b= I+—>) p,. (7.26)
gk, ghz gk

From (7.25) il is clear that there is one negative eigenvalue if either
a ta,—b <0 (7.27)

or
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_ ARy )
(@ ~a, +b6) +4(pllh]“ ) >(a, +a,—b,). (7.28)
ga,

2

Condition (7.27) can be transformed into

? 2

—) <0 (7.27y

1- (|V1,, +2p"VL|
gh, g.gh,

Suppose that there is no veriical shear of the basic flow. ie. f;l = l?, , but & horizontal

shear of .5,1 =y, (asinf) ! exists, i.e. | l71 ! =0 by every choice of r,, but the velocity

’ FI | in some area is large enough such that

{2 1 2p1 -1
Vi 2|t (7.29)
gh, pogh,

hence (7.27Y is satisfied. This is the super—critically high speed instability. Next, suppose that

there is no horizontal shear of A, but A #., . we can choose r, (if there is no

orography) such that makes |l7l ‘ =0 but |I7‘2 #0 ,or {ffmz | =0 but V] |¥(}. If
1=17,|  7gh; " <0 (7.30)
in the first case, or
oV [
1- 2'[7‘” <0 (7.31)
9,8%,

in the second case, (7.27) is also salisfied. This is the Helmholtz instability in a vertically
shear flow of stratified fluid under the influence of gravity but modified by the shaliow ap-
proximation. It is well known that according to Helmholtz theory, once there is a vertical
shear, large or small, there are always unstable waves with small enough horizontal wave-
length on one hand, but in order to make a wave with given horizontal wavelength unstable it
is necessary that the vertical shear of the basic flow should exceed a critical value on the other
hand. Now, the shallow water approximation can be applied only to long waves, that is why a
critical velocity (vertical shear) is necessary for the occurrence of Helmholiz instability in our
laver model.
Condition (7.28) can be transformed into

2_>(1 'M?)zﬂ“M?
P oU-pi-My)

N

(7.32)

" where

{p, —p,)

Miva.&f/gh;:.- k=12, p= o

If M,=0,(7.32)leads to
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(1+8)
but if M,=0.(7.32)]eads ta
(1—§) M, +p<0. i7.34)

{7.34) can be satisfied only if #>1 or f<0. In all the cases {{7.32). {7.33) and {7.34)], modi-
fied Helmholtz instability might occur only under a vertical shear exceeding a critical value.
and another instability might occur under unstable stratification (< (). In general case a
mixed Helmholtz—supercritically high speed instability might also occur.

In addition. mixed barotropic—bareclinic instability and inertial or symmetric instability

might oceur if at leastone ¢, 07, (q; } changes its sign or its sign is opposite to .

VIII. BAROCLINIC PRIMITIVE EQUATIONS

Taking hydroslatic approximation and writing the governing equations in coordinative
system (0, 4, & 1), where ¢ istheentropy

=g, =In (T/p* ), ®.1)

and &, is a constant, we have

oy

A CK
Chay = R 2
it hav, aéfy ° 82)
év; _ K
& TRea T T GGnead ®-3)
%4_7.?‘]:0‘ (8.4}
where a
h= -2, {8.5)
aé
KE('pT+(p+|ﬁz/'2, (R.6)
_1 1 0"A.Si“0 ﬁ“'u 2 0 87
9= Jasind\ dg | ay ) Aweost @7

p isthe pressure, ¢ is the geopotential. ¢ is the potential vorticity, @ Al @ S8
and & /¢ A, are the derivatives given at the isentropic surface.
Naote that the continuity equation

;
T hv=0 (8.8)
&4

can be obtained from equations (8.1)—(8.4).

Assuming the atmosphere is bounded from below by a spherical surface with radius
a (without orography) and has bounded total energy E and generalized enstrophy £, we
have conservations of E, F, lotal angular momentum A and total mass Ma.

For simplicity we investigate only those basic and disturbed flows whose estropy ¢
is monotonically increasing function with radius r. and whose botiom surface 15 an

isentropic one with fixed constant £, . (85,=0). In such case the invariant functionai / and
its variations take rather simple forms. Let
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U=l E+r F+Ir M+r Ma, (8.9}
where

Esi” j (71 + 20,7 hdids, (8.10)

“ddvda
FEJ I Q (g, &) hdLdS, (8.11)

vs o
M E'”\ e (v, +awsin) hdids, (8.12}

Svn

ms”J hdfds=H p,ds. (8.13)
S by

where Z,=0 has been taken for simplicity but without lost of generality, it is equivalent to
$o= —In(T, /pie . ).and p and T  arethe variables at the bottom surface.
Now ¥, h and p_ can be taken as the independent functions from which all other

variables can be determined. Indeed, p, 7, ¢ arerepresented by 4 and p, as follows

4

p (0.2.5.;)=p>c[a.)..:)—J h0A0) dE (8.14)
q
R
X . - [T
0L =[p(ﬂ./..;,l)} e T (8.15)

E
-

@ (BAED) =¢T(0.;,,11~J RT (0.A.2.1) ai (1nf—) Fa (8.16)
S Y

1]
(see Zeng, 1979). Therefore. for a given set of variations ( 3V, 3h. dp ) wehave increments

of p, T and g asfollows,

: o
dp=4dp, —J Shdi’.  lor Sh= 4(—5—12} . {8.17
Q h
ST=8 T+o T+ =8 T+AT. (8.18)
sy=d'g+sgr—=sg+rq (8.19)
where
> g 5 1
c ' T=r1®2 . . §T= - RTEY. (8.20)
” r r 2L";7 P
o 1 v sin) - Oov, h 2 Bk '
= (e - -2 =59 8.21
4 hasint ( ef A qh - Oy o g fr ) ( )
A C 1
e ATT= - rT (2 (8.22)
" 2e 7.

P
R;‘:-P ¢ (B ]

(T, =p Lp.=ptr_ dp, 0<r, <1)
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A

Alg=5g-58'g= -3 Sl (8.23)

From these formulas it is easy to obtain 87, 67 and AL and we have

Zél*jJ. J {,:Zrﬂhvu +r'asi:65;l (%g“) :lévﬂ
5 Jo0

Aa
+[2h (rnvj+r2asin9) friﬁ (%g) ]51}1

+[2rﬂK+r Q- q—Q) +2r,asinf (v +awsing) +r3]5h}a’g’d(ﬂ.24)

£ v . 2
2521:’”\ J h{ru[évf. + + 2 asin®) @]
5 YD ' B A
5:] - [(v +—asm0)

Jt"”)2+ c’ (11

\:u

+cﬂh“ r +r|[QQ—L£‘*g"i {hA™ g + dqoh)
2 &g

+r,adhdv, sinl ydids

4 -

- ‘.v Fa ’ > 5 ’
= roh dv + (v, + = asinf) ﬂ— ok dv, +v ?h. :
0 . ERL 0 1 v
L) a h h
2 ]
¥ - r, 2 2 2 (S
—roh [ (v, +rjasin0) +v;}[;h‘ :l +rﬂhC,_[—f:|

crORT :
+r h—Q—L[ ] }dgdm” rnf[ép_‘:' ds, (8.26)
5

s

where

{q‘ =g+r dg. 0<¢ <1,

B =h+ b,

2 o

c’=r G+ BT
s

RT (8.27)
£



No. 2 Zeng Qingcun 165
2 LR - i 2
c . =CT+ 1— £y o b pr e gy (23700 (8.28)
<, P ]
C and C.. have the dimension of velocity, namely the characteristic velocity of propaga-

tion of gravity wave in the continuous baroclinic almosphere. In our case C and C, .
must be positive due to the assumpiion of stable stratification (the enstropy monotonically in-

creases with height), and Ci - = O(3R).

- *

The procedure of deriving (8.24). (8.25) and (B.26) essentially is the same as the deriving
of (6.18). (6.19) and {6.22} but with the following considerations:

hidé = — %’éd@ —dp = pdeo.

dpdp = — J rp% do = f @Shdi.
3] {

PXJ . P”l.
he, &' Td :J
vl Qa

A

¥

1 - 22 v RT.\ L7
c |8 Toh+ho™ T \di= 3 {op ) + 4,
Ju

n

' B *v 1 o RT_; . 2
¢ 8 TR+ ATT AT ) AL

“ N
where
T ¢, s e
-4EJ Q[i_ ALy — R:Th}(ép) d;=f Chspiaz.
u e 2 Cﬂ i3 0 2p
N e, RT, . . i s
A4, =J %[P‘- KTy )y Ty }(@Ng{ Aot apyia,
a - S P o . w 2P
because
i v ¢ "
LBTy Loy RT, R\CT T ey
C.-g n (f‘ P e (’[] (2N
_R|T _RT (Cp
plép c,p |®
_RJT|: ‘?T_}L:|£"E
P ér ¢ |62
o r -
:Cz i,
P
§ ¢, RT, ., : . . v+ RT
B R e e —C—zk()|:3h —1lr]
e p % pl ? » L7, p
. [ T, 2
= h- (,‘)RT”[—?(J’—; (H%) 1].
P “%ooop ,

and for every isentropic surface we have




166 Advances in  Atmospheric  Sciences Vol. 6

T, 7. ®
= {— ‘
T P
Theorem 8.1 Every propagating wuve solution to the baroclinic primitive equations

(8.2)—(8.4) with (i) a constanl enlropy ul the bollom surface, and {i1) every isentropic surface
enveloping the Earth corresponds 10 a stationary point of [ in the subset consisiing of func-
tions which possess the characteristics mentioned above. and is determined by the following
equatlons:

- e
Ty v _
RTINS +r3u51nr7} h rlm‘{) (f7q } Q.
¢ It
IR "t asingd; £ y =0 (%.29)

i . .
r K+, {qu?:g) +2r,asin® (v +awsind) +r, =0
where ¢ is an arbitrary function of ¢ and ¢&:r, r. 72 and ri. are arbitrary
parameters. The phase angular velocily 4, = —r, /1, .

The proof of Theorem 8.1 is essentially the same as that of Theorem 6.1,

) However. fram (8.25) or (8.26) it is difficull to find sufficient condition of stability. In
fuct. the term with (¢~ A7 (or (3h# b~ 7)) is negative. but all other terms with r, on the

right hand side of (8.25) or (8.25) are posilive provided r,> 0. Therefore. there is no guaran-

tee that &7 or A’ is positively definitive even if 7 "Qg &)/ € ¢ or nd “Qlg” &)

£ ¢ is also positive, provided  [v;+(r & radasind]'+5,#0. In fact, according to a general in-

tegral inequalily one can always find function dp with small enough vertical scale such that

J (6hY dE > | (dp) de. (8.30)
i ~

One example is  dp=(dpJexp{-—ns). from which we obtain

z i

j (fih}zdk,::n:\ (dp}zdnf,
0 LAl

and

lim [ () dé— =,

ttda

but

limj (5p) dZ=0.
I

Another example s dp=(dp Jexp(—Zlsin” ml. we have

n?
-

im | -y s =100,
but

limJ (5hY dE >0,
{

m— =
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This means that there is no upper bound of |avlly, Ik < #l5. Nap /pl. ldp,'*. and

1650 # ™)' g ;. hence the stability is not guaranteed.

We still cun muke a classificution of instabilities in the baroclinic aimosphere. Except
conveclive instability which is characterized by ¢ &7 8 1< 0 (or C* < 0y and excluded b&
our assumption in this seetion, we have (a) mixed barotropic—baroclinic instability characier-
ized by € *0{¢" .51/ 7 ¢ in some region. (b} inertial or symmetric instability which mighi
occur under condition & “Qg’ £)/ & g and other additional conditions. (¢} Helmheltz in-
stability and (d) super—criticully high speed instability. both they might oceur it

[ . - ; -
Sasind) v I(J’j”f )'}di <d. (8.31}
it

]

il p

in some region and some time. Roughly speaking, (8.31}1s always the case that when internal
inerlio—gravily wave with small enough vertical wavelength takes place, because its character-
istic phase velocity is much smaller than € and can easily be exceeded by the speed of basic
flow [ty +r,asindr )" + 1'i]"“ * . Therefore the stability of a flow in a continuous

baroclinic atmosphere can be guaranteed only if the perturbation super—imposed on it has
always a simple structure in (he vertical. otherwise u Helmholtz instability might eventually
arise. and the stability might break down.

The problem on the stabilily of flow in baroclinic fluid needs more investigations.

APPENDIX

The key point of variational method is to find an invariant functional consisting of inte
grals. Therefore. in the case that the fluid occupies infinitive space and the integrals are no
longer bounded. the generalized variational method has to be modified. In this note we will
deal with such modifications, tuking the two—dimensional incompressible fluid in a fi—plane
as an example.

1. Periodic channel

The gaverning equation for the twe—dimensional incompressible fluid in a  fi-plane i
the conservation of the absolule vorticity
q .
't
where ¥= & XQW = fu+jv. y isthe stream function and

vogg =0 (A.L.D)

g= A+ 7, . (A1)

=i, 8 (A3

£ s taken as a constant; and f,, s another constant. The classical model withoul Coriolis
force corresponds Lo the case with £,==0.

Let the channel be parallel (0 x—axis with two rigid walls at p=p, and y.

1= vy, and the motions including the basic % and perturbation dw  be all periodic along

x—axis with period 2L, We have the conservations of tolul absolute momentum. A4, total en-

| Presented at the International Symposium on Fluid Dynamics. July 1987, Beijing. and the cxilended
abstract has been published in the associated proceedings with a 1itle “variational principle of’ dynam-

ic instability”
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ergy, F, and toral “generalized enstrophy”, £, and the conservations of total zonal momen-
tums B8, and B. atthe two boundaries 1, and p, respectively. where

wt

M EJ J - [u + [‘ f(y')c{v"]dyd.n (A 1.4}
-L r v
L vy
E= j J. %(u_ + v dydx, {A.1.5)
R
f 1
F EJ J (g)dvdy. (A.1.6)
LYo
L
B, :J ulx, v . . (Al
L
oL
B, zJ ulx. ¥, 1)dx. (A.18)
. ,

y1>vs, and @ isan arbitrary function of argument g¢. Hence we have an invariant fune-
tional. [y dF/ dr=0, where

I)y=2 E+e F+er M +r B +r,B, (A.19)

depends on an arbitrary function ¢ and certain parameters rg. 1y, and . The
parameters r, and r, will be determined later.

Giving a perturbation dy. the first and second variations, 31 and &1 and the dif
ference between fp+8y) and i) are obtained after elementary calculations as follows:

1. aly
al = J J { —2r e QU+ r}\-‘}c’iqdydx
-Lva

L
+J {,_r g—r.¥, tr, )ﬂ} dx
-1 \:\:

ay
ol 2
+J { (—2r ¢ tr,¥, +r.‘j-;?:]g} dx, (A LI
ir= j J‘ {t lav] +*Q”(q)(éq }d}dl (A1)
r .
= J ry lav]" +TQ”(q Wy rdvdx, (A.1.12)

(g  =q+r dq. o<y € 10)
and .
Iy +8y) — Fyy =81 + AL (A.1.13)
We can always keep § al y=y; asaconstant W, and prove that ¢ at y=3, is-
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another constant ., independent of 1.

Taking

{"_: =2, =,
Fo= IR, T (A114)
the last two integrals in (A.1.10) vanish, hence &/ is simply expressed by a double integral,
and we have

Theorem A.1. Every zonal flow (y) or propagating wave t{x—cr)) in a
two—dimensional incompressible fluid channel 1-<p<<y, of fi—plane is a stationary point
of 7 inthe functional space . ie. 8/=0.where r, and r; ave determined by {A.1.14),
and ¢=-r/ 2ry. The inverse is also true.

Theorem A.2, A flow  (x—ctg)  which is determined by $f=0  with
function @ and parameters r, r. and r. is always stable with respect to every small
perturbation % which has a common x-period with #(x—ery), if A'f is sign—defini-
tive functional i.e. v, and # Q"7 2 both are either non—negative or non—positive every
where in the channel.

Theorem A.3. A flow aix—ct,y} might be unstable if either + 07" )72 isa
sign—nondefinitive function in the channel or its sign is opposite to 7.

The method and the theorems described above are essentially the same as for spherical
surface. Therefore, we have omitted the proof of these theorems. Note that zonal flow (1)
is a special class of W (x—er.v). hence it is inctuded in the Theorems A.2 and A 3.

2. Infinitive channel with 8V and dgel,

If the flow is not periodic along x. let L— w0, the functional { defined by {A.1.9)
generally is unbounded, hence the method and results described in the previous section should
be modified.

Theorem A.d4. Every zonal flow or propagating wave {x—cry) in_a
two—dimensional incompressible fluid channel 1,<Xp<{y. of fi-plane is given by the fol-
lowing equation

*2r0$+rLQ'(q’l+r!'\‘=O. (A2}

and the boundary conditions

v = 3:7(’3}‘1 +r) at y=p.

§ “1“ (A.2.2)

V= 2r,
where (0 is an arbitrary function, and r,, s=0.1.2,3,4 are some parameters. The inverse
theorem is also true.

Theorem A.4 can be verified by direct calculations, Note that Theorem A.4 and Theorem

A.] are the same if the words about / and 4&/=9 in theorem A.l are replaced by the rele-
vant equation. 1.6 {A2.1).

(rov,—r,} at v=y.,
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Taking a zonal Now or propagating wave as the basic flow, constructing a functional {
as (A 1Y) with u fixed finte L. we have (A.1.12)and (A.1.1). but 4] expressed as follows

V=L

o
d[=f ([zruw ‘f‘j_l’]ﬁi’ ) dv. (A23)
' R

Therefore. we have [{f+di) — i) expressed by the following formula

' ~ty =4
AEI[er(Sm—IM):J ([Eruwr:y}iv ) dy
. kS ¥ = i

al -

o 2 s L) 1
* } ) {roiﬁ?l' +5 0" )(r’iq)"}n’,rdx
AN -

—A A, (A.24)

In addition, from equation (A.1.1} and its equivalent equations

JE = Gtk X[, (A1)
v-E=0,

we can calculale dF /7 dt. dE 7 di and so on. Finally, we have

AL 5 v=1L

: 3 |

% = - {Eruulf +rou@ - rzzr(u +J _f(t")d}."')+ raQ } dy
b . Y- o-

I 7

1 - 1 =1
_ ,.{((p _2!},) }( ,“[(, —M—T) ]( . (A.2.6)
3 T ey = N S e =

where K=@+|v1" 72 and ¢ isthe pressure determined by 1w from solving the so—cul-
led halance equation.
Now. assumie that both |67 and dgeL . are given over the whole infinitive channel.

In this case, denoting the limitof A by A us L—x ,wehave

Al

- : R TR
A =J { R L R PR ) }mm
- vy -
= limA,, (A2T)
and can prove that

@ = lim A _

dr s .. dt
Therefore. Theorem A2 and Theorem A3 are both valid with Al replaced by
A, becasue A is an quadratic functionul of ¢ und invariant. although { does not exisl
SN PR = <X

0. (A.2.8)
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3. Infinitive channef.  General case
In the case of non—existence of A. we define

A npl s
esg. 1S zJ J dvdx) (A1)
L Y
It is not difficult 10 prove the existence of the following limits

= lime
| L ' r
= limSj J. {ruhi'v'r + Tl (g ) }(Jq}'}a‘}'a’x. {A32)
v LY “
de _ pode _pod o 2o
q " mg = limy, Ggr =0 (A48
Now, we take a generalized definition of stability:
Definition A flow is stable with respect to the small perturbations provided there ex-

istsanorm &y ', Tor the perturbaiion, and the norm is always bounded.
-2

The norm we can take is |A.2 {with L equal to the half peried) in the periodic

o le3 . . : . . .
channel or |A| in the infinitive chunnel with finite A, In the case of non—exislence
of A wetake

: A,
@l = lim ‘&;; . (A3

Therefore. we have the following thearems valid for both periodic and infinitive channels and
all cases.

Theorem A.S. A basic flow described in Theorem A.4 is stable wilh respect to the
small perturbations if r, and rQ"{¢") have the same definitive sign everywhere in the (lu-
id. .

Theorem A.6. The necessary conditions for the instability of basic flow which is des-
cribed in Theorem A 4 are either r, and r,0"(g ") having opposite sign or @"(¢") chang
ing its sign in the fluid.
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