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ABSTRACT

A method to expand meteorological elements in terms of finite double Fourier series in & limited-region and a
spectral nested shallow water equation model based upon the method with conformal map projection in rectangular
coordinates, have been proposed. and computational stability and efficiency of time integration have been discussed.

L. INTRODUCTION

In tecent years the spectral models have been widely used in NWP. No matter whether
shori—and—medium—range forecasts or long—range forecasts are made by them, they are
drawing more and more forecasters’ and meteorologists’ attention. These models, however,
are nearly all global or hemispheric ones under certain conditions. Up to now, for forecasts
with computational domain smaller than the hemisphere, no predicted model has been pro-
posed, except few spectral limited—area models, such as that given by Tatsumi (1985). Accord-
ing to his numerical experiments, although the CPU time taken by the model is about 1.2-1.3
times as much as that by the grid point mode} 12L—FLM to complete the same forecast peri-
od, the locations of the predicted systems with the former model are in general more accurate
than those with the latter.

In this paper the method for expanding meteorological elements in terms of Fourier se-
ries in one—dimensional case in a limited interval given by the author in 1978 is modified and
generalized so that it can be used in two—dimensional case. Then, a regional spectral nested
shallow water equation mode! and related numerical techniques are suggested.

1. SPECTRAL EXPANSICON

Assume 2 limited domain R with fine grid to be nested in a domain R with coarse grid
{Fig.1) and let F represent a meteorological element. Then the spectral expansion of F in
{wo—dimensional case can be reduced to two successive one—dimensional expansions, such as
expanding F in x direction and then in y direction.

At first we expand F inx direction.

Let F be expressed by ~ -
Flxyy=F(xy)+ Fixy), (M

where

Fx ) =[F(x, y) = FOPT— @

It can be seen that Fis identically equal to F{0,y) at the boundary points (x , .»}
and (O,p). Thus F may be expressed by
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Fay)= ¥ F, (0™, (32)
where [, isthe largest wave numberin x direction, m=Ima/L .
L. R
Fm(v)=L1 J Foxple ™ ax. (36)

0
For convenience, the summation symbol on the right hand side of the above expression is re-
placed by the symbol ¥ in the below.

Now weexpand F_(y} iny direction. Let
F0Y=F )+ F (), “

where FLp=[F, 0,)~F, (0)];}. (5)

Like the case in x direction, F,, canlbe expressed by
th (y) = Z F,M efﬁ,\' — ZFM,, e:‘i.l‘ ) (68)

n= —in

!

where !, is the largest wave number in y direction, 3 = ¥ JAi=2an/ L}_ .

a

L
Fr=1- j Fe ™ dy. (6b)
¥ bl

Combining the expressions (1}—(6) gives By
Flxy)=Flxp)+ LF, (™ + LY F e

However, the expression (7) can only be used within the domain £ . At the boundary
x=0and x=x , .spectral expression is still needed, For this reason, the manners similar

s -+ Ay

7

M
to the above may be applied. The resulting expressions read as follows;
FOp)=FOp)+3F (0" (8a)

e ot k1w
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and

Fix, »)=Fix, p)+ LF (x,)e™, (8b)

where
RO =1FOy )~ FOOH-,
i
Blx 9} =1F(x ) =~ Flx o O
¥

The expressions (7) and (8) are the basic ones in this paper. In the following sections all
the meteorological elements involved will be expanded according Lo the basic expressions.

1. SHALLOW WATER EQUATIONS

According to Robert (1982), the shallow water equations in rectangular coordinates with
conformal map projection can be written in the form

v _ dp

G~ TN @)
eV _ %o

ar = Ty +N_, (10)
a '

T =9 DEN,, (1

where U=u/1LV=yv/!l [ isthe magnification factor of conformal map projection, @,
is the average depth of the fluid surface, ¢’ =gp—¢,,
_ d &8 ds
N = _S(Uﬁx +V8y)U Xax +fV,
d 3 ds
= - — 4 = — K—= .
N, Sw@x Vay)V Kay + U,

- ol e
N, == SWa +Vze = oD,

]

Ox + a_y)-

s=4,
1. .2 2
K=E(U + ),

D=5

fy | ev
o

the others are conventional symbols used in meteorology.
In the above expressions the N N and N‘? represent nonlinear terms. However, for

the convenience of computation, the Coriolis terms are also included in N, and N, .
IV. DIFFERENTIAL-DIFFERENCE EQUATIONS AND SPECTRAL EQUATIONS

1. The Explicit Case

(1) Differential—difference equations

Express Eqs. (9)—(11) in explicit leapfrog form; then
ot =uT -2 By Tara ) A (12)
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T |

=yt -2 (g—f) TAL+ 2N A {13)

T+

and o' =9 T =20, D Ar+2AN ) AL, (14)
Note that the superscripts of ¢ have been neglected.
{2) Spectral equations

In the following the transform method will be used. At first replacing F in (7) by
U, ¥V, o and § respectively and expanding them in the domain R, we can find the val-
uesof D, N, N and N at the gridpoints. Then we expand them. Substituting the ex-

pressions expanded into Eq.{12), we have X
G1+l + ZU’:.t+leimx + ZZU;: lei(mxfiiy}

=0t—-] +Zﬁ;.w—lenﬁx +ZZU;:lEf(rﬁx+ﬁy)
+‘2\]' +ZA;',rein"tx +EZA;nei[’m'x+ﬁy)’
where
=2A— (3 / xY +(WF )],
=21 —img, " +(N ).,

AL =2M[—img, +(N,)

m

-1

Al

.
Am
€
mn]'
— Hrhx + Ap)

Multiplying the above expression by and integrating it over the

computational domain R leadsto -,
Ut =ut el w8, 4T (15)

mn N

where

g =- ‘2{u“'(xu,y,)—u“‘(xu.0)—U‘*‘(0,y~)+v“'(o,0>

dmnrn

U T xy, y U ey, U0, ) - U 00
+2A:[(Nu)’(x‘,,. y)— (N (x . = (N )0, yh.)+(zv,,)‘(o,0)]}.

_ 1
2mmi

Ul =0T 0= e )+ UL 0+ 280 (V)L (x )
n M n n M

— (N ), (0) ]

L __‘]— =1 _ 1=t t+1 _ T+ ,
L"""_ anzi[Um (yN) Um (O)+Um (0) Um Uh)

+2400 (N, ) —(N,), (0)] + -’;—’;ﬁ[w; Wy)~ (0)],

L
¥

Un(x,w)zL]_[ [U(Iu’ ¥)— ﬁ(x,u’ y):le*iﬁ)'dy’
¥

and U (0)'S hassimilar form.

L1}
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With the manners similar to that used in dermng (15) the spectral equation
vitl=y'+B +V_+V. (16)
and
e lrCl 4+, to. an
can be obtained. Here ‘

T

3. =2A:|: rmp +v, )mn],

Vo= 1 - {V"‘(x_u, Y-V e, 0P T )+ VT (00
4dmnn

Ve v )V i, 0+ V0, y =V T 00+ 240 -

[(N_)'{x,,, Y)W ) ix,, O—(N ) (O, y~)+(N,)’(0,0)]}

1 -1 =1

+2At((Np);(xM)—(N,);(0)) ,

'(+|

EMER AR ()

P ___I_ . 1+l t+1
lel’- ZHJHI:V (y ) (}’ )+V,, (0)

+2Ar{w,);u~)—(~,); (0}) ,

C =2At[ —@,D., +(Nw];m],
1
dmnn

By = — 3 {w'_l(xu, 20 B AR W) B AR (RS R AR (X
T )t . e 0 v, 00
+ 2A1[¢(xM Py =0, O —®0, y, )+ (0,0)]}

1

—m,[ MR ORI CRET M

(©

+2£\:(d>: (xu)v—d);(ﬂ)) :

P
@ 2nni

1]

[co;"oz,v)—go;“(m—qa;“cv,,)+¢,, (0)

-

+ zm( P (y, -0, (0))
O=—g,D+N,. ]
2. The Semi—implicit Case
(1) Differential—difference equations
The semi—implicit differential—difference forms of Egs. (9)—(11) are
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a Tt 1 " -1
T -1 o
: =i — Ly ._42) i
I L [(”) +(z?x ; ]At +2N At (18)
El i o [ |
(e g
ooy (2] (2] oavia »
and
(p:“=¢,af"—l;ou(Dl—l+D:_i)m+2NQA!. (20)
Eliminating ¢ and V'~ Lz fror?n the above equations gives
41
(V' ~a)eo " =6, Q21

where
2 - 2 z 2 Y E’N: BN,
G:E —2a AJN‘F—(V +a g +2(-—‘.§4 +~ﬂ—-—)
s AU v
dx vy’
a’=1/sp At

{2) Spectral equations

If £/,) and ¢ are expanded as F in (7) and substituted into (21), by means of the

orthogonaliiy of complex exponential functions, we have

| l —~ -t
o T m al (N of - o - 22
ﬁzz +ﬁz +32 @ oan ar (22}
where
Fow =~ {Gt.xM. Y= Glx . =GO, » )+ GO0 —H " (x,, p,)
4mnm ’ ’
+H x,, 0+H 0, ,vN)—H’*’(u,O)},
~t *_l@_ Doy p .2 b o
By = 2m.{G,,,U,~») G M+im +a )y, ) wm(ﬂ))}.
Hz+l =(v? ’az)(pﬁx'
The expression of G in Eq.(21) can be rewritten as o
G=G—+ ZG; elm.r + ZZGmner[mx*m‘)‘ 23

where
6-25"" —2a° AN — (VP )t 42 (aﬁ; +6—N:
A “ o TV Ta )R 8x & )
G, =%a;"" — 2t AN ) R ~a e  ammi(N )
2. .
too [N, ), () — 4N ) O
mn 2 - 1 1 .,\2 a2 2 - T T
G™ =8 2 AV Y, T A el i (Y)Y, Y]

Afier having obtained @ , from (22) &, [=(p.. +o. )/2] can be
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found. With the help of boundary values and replacing (p:m in Eq.(15) and Eq.(16)

by~ weobtainthevaluesof US'' and ¥ " immediately.

3. Drtermination of the Largest Truncated Wave Number

As is known the largest truncated wave number may be preater than I /2d
{or L /2d) in compuling nonlinear terms. According to Machenhauer et al. (1979), in or-

der to avoid aliasing and estimate the value of spectral coefficients accurately, the inequalities

i< l(L—x -1 {24)
m o3 g 2
and
Py (25)
v 344
should be satisfied.

Y. COMPUTATIOMNAL STABILITY AND TIME INTEGRATION
1. Compurational Stability
(1) The explicit case

Consider the linearized case with the basic current in x direction at speed U asthe ba-
sic state. Then it is sufficient {o take the computational stability of a single weve into account.
The wave may be assumed in the form

U "
¥ Al R+ R+

X= = VxR b an (26)
@ A

If the boundary values are prescribed with periods L and L in x and y

directions, f=const and /=1 , then substituting the above expression in Eqs.(12y(14), we
have

H X=0 (27
where -
2i(sinwAt + UmAr — 2fAt 2iAtri
H, = 2fAL 2itsinwAt + UnAn) 2iAth
2ip, At 2ip, Ath 2i{sinwAt + UmAz)

If the homogeneous equation (27) has nontrival solutions, it is necessary that
=
Thus
sinwAi =0

and
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1/2
sincsAr = i{rpo(rﬁz +r‘r‘2)+fz} At — Urhr.

Hence. stable computation should be subject 1o the criterion

-1
Ats{{Trﬁ+[¢;o(ﬁz2+Fi2)+f2]”2} . (28)

4 -1

Given U=50 m/s, 0,/ g=9x 10} m, g =98 m/sz,f= LO31x 10 s L,
=L =50x 107 km, =100 km, the dependence of the permitted largest time step
At upon A(=Vm’+nr") isshown in Table 1. It will be seen from the table that in the

ax

case of A7, A7 >35 minutes, which is far greater than the time step selected according

to the largest truncated wave number.

Table 1 . The Dependenceof As - upon A

A I 3 5 7 9
Ay
e 36.7 127 7.5 5.3 4.2
(min)
A 11 13 15 17 12
At
s 3.5 2.8 2.5 22 2.0
{min}

(2) The semi—implicit case

Like the manners used in the explicit case, substituting (26} into Eqs.(18)—(20) gives

H,X= 0, (29)
where
2ifsinwAs + UmA7) — A 2iAsRicosmAs
H = 27At ifsinwAt + UmAr)  2iArficoswAl

2
2ip, mAtcoswAt 2ip,AArcoswAr  2i(sinwAs + UmAL)

Hence, if there exist nontrivial solutions, it is necessary that

|#,{=0. (30)
Then _
sinwAr = — UmAt, (31)
and
(sinwAr + UmA:® — g (i +# A" cos” wAr = Ar" =0, (32)

From (32} the computational stability criterion is given by
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1
Ui+ + @ 00" +7 )os wAs)

Ars

It follows that
S
Um+f
where Ar  is the permitted largest time step from (28) in the explicit case. For the wave

ZAtZ A, (33)

m= 16, based upon the figures given previously, |/ {(f+ Epﬁ) = |5 minutes. In practice Ar
should be determined from experiments under the guidance of (33).

2. Time Integrarion

In the above the spectral equations in the explicit and semi—implicit cases, and their re-
lated computational stability criteria have been given. It can be seen that the amount of com-
putation needed in the explicit case for integrating the spectral equations is far less than that
in the semi—implicit case, and the time step selected in the former case is generally far less
than that in the latter case. Therefore, in time integration appropriate schemes should be
taken according lo practical situation. However, in order to guarantee higher accuracy and
save the amount of computation the following (wo ways offer a choice to be taken.

One way is adopting the semi—implicit scheme in time integration completely. The time
siep, however, should not be taken too large. The ideal step, we think, might be the siep that
its accuracy is acceptable as compared with those in the explicit case and the computational
amount needed is economical.

The other way is to adopt the explicit technique for longer waves and the semi—implicit
technique for shorter waves. For example, by taking A¢ to be 5 minutes, the expiicit tech-
nique is used in the case A <7 and the semi—implicit technique in the case A>7 . It
should be pointed out that Burridge {1975) had suggested similar strategy for a 10-level
gridpoint model,

VI DISCUSSION

The above—mentioned model, in principle, may be put into test. However, there are a lot
of questions to be answered, such as the comparison of the model with that given by Tatsumi
(1985), the consistency between the coarse grid and the fine grid, how to extend the model
suggested in the above to a regional spectral multileve] primitive equation model, and whether
there exist other proper basis functions, and so on. In the following they will be discussed
successively.

In substance, the above model and Tatsumi’s mode} are the same. The differences be-
tween them lie in the basis functions used and the integration limits selected. In the above, the
suggested model uses double complex exponential functions as basis functions and the inte-
gration limits being zero and 27 , while Tatsumi’s model uses different trigonometric series
for different predicted variables and 0, n as its integration limits. Therefore, in Tatsumi’s
model, the integrals of some basis functions are not vanished, and soms basis functions are
not orthogonal. Thus extra computational amount would be needed as compared with the
above—suggested model,

Besides, in evaluating nonlinear terms in the suggested model, the largest wave number
may be in excess of /_ or ! . Although adoption of inequalities (24) and (25} can avoid

aliasing, such treatment is different from the case that L /4 and L /d are allowed to be
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equal to 2/ amd 2/ respectively under the condilion of mean square error being mini-

mum. In practice, such treatment is equivalent to filtering out some short waves. Therefore,
the fitting accuracy decreases. However, if other proper orthogonal functions, such as
Walsh—Hadamard functions, are adopted as basis functions, the difficulties encountered in
the above might be overcome, because the products of those functions still belong to the basis
functions selected initially. unlike the case of using trigonometric functions.

As for the connection of the coarse and the fine grid, current treatments used in grid
models, such as relaxation lechnique and so on, may be used in order to eliminate the
inconsistency between the two different grids due to their different truneation errors in the vi-
cinity of the boundaries.

Finally, how to extend the above model to a multilevel spectral nested primitive equation
model is a complex problem. As is known, however, a multilevel primitive equation model
can be reduced to several sets of shallow water type equations characterized by different equi-
valent depths by means of normal medes. In this way integration of the multilevel primitive
equation model is equivalent to integrating sets of shallow water type equations. Therefore,
all the techniques proposed in the above sections can be used. This problem will be discussed
and analyzed in other papers later.
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