A Study on Hydrogen Peroxide in the Atmosphere Su Weihan (苏维瀚), Li Wei (李巍) Research Center for Eco-Environmental Sciences Academia Sinica, P.O. Box 934, Beijing Ding Guoan (丁国安) Chinese Academy of Meteorological Sciences, Beijing and W.E. Wilson Atmospheric Sciences Research Laboratory, U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711, U.S.A. Received September 28, 1988 #### ABSTRACT Hydrogen peroxide (H_2O_2) concentrations were measured at two sites. One was on Lushan Mountain in May, 1987. The other was in Beijing in August, 1987 and in December, 1986. The automated fluorometric method was used for the determination of H_2O_2 . The concentrations of H_2O_2 ranged from approximately 0.50 to 4.32 ppb on Lushan Mountain. The concentrations of H_2O_2 ranged from approximately 0.05 to 1.49 ppb in August in Beijing, and it was only 0.01 ppb in December in Beijing. #### I. INTRODUCTION Hydrogen peroxide (H_2O_2) is an important product of photochemical reactions in the atmosphere. H_2O_2 is directly related to the concentrations of HOx radical in homogeneous and heterogeneous processes in the stratosphere and troposphere (Crutzen and Fishman, 1977; Cox and Burrows,1979). The oxidation by H_2O_2 in atmospheric aqueous materials, such as rain, cloud and fog, is considered to be the principal pathway for the conversion of SO_2 to H_2SO_4 at the pH range of the acid rain (Penkett et al.,1979; Martin and Damschen,1981) because of its high solubility in water (Henry's law constant is about 10^5 M atm⁻¹). Thus, the determination of concentrations of H_2O_2 in both real atmosphere and simulated system is of considerable interest. Bufalini et al. (1972) reported H_2O_2 concentrations of up to 40ppb in Hoboken, N.J., and of up to 180 ppb in Riverside, C.A.—during a very severe smog episode when the oxidant concentration reached 0.65 ppm (Bufalini et al., 1972; Gay et al., 1972). They also reported that the maximum concentrations were measured at midday with strong solar radiation and on a day with moderate smog. On days when solar radiation was weak due to cloud no H_2O_2 was detected. In 1977, Kok et al. (1978) measured H_2O_2 concentrations continuously in the California South Coast Air Basin by the chemiluminescent method. Typical mid-afternoon concentrations of H_2O_2 ranged from approximately 10 to 30 ppb during moderate smog episodes (i.e. O_3 150-200 ppb). The concentration was substantially lower than those obtained in the earlier work of Bufalini et al. The differences are probably caused by the measurement methods. In the earlier study oxidant rather than ozone was measured as $\rm H_2O_2$ signal. When Lazrus et al.(1985) tested extensive interference of the gas—phase $\rm H_2O_2$ instrument they found that 130 ppbv of NO caused a 0.016 ppbv reduction in $\rm H_2O_2$ signal; 40 and 100 ppbv of $\rm O_3$ increased $\rm H_2O_2$ concentrations by 0.010 and 0.030 ppbv respectively; 0.5% and 5% losses in $\rm H_2O_2$ signal were caused by 10 and 100 ppbv of $\rm SO_2$; effects due to 15 ppbv of $\rm NO_2$ and light saturated hydrocarbons, 20 ppbv of HCHO, 10 ppbv of HNO₃ and 92 ppbv of NO were not detectable (<0.010 ppbv). Kok et al.(1978) observed that H_2O_2 concentrations in the mornings were likely in the range of 5–10 ppb with few cases when H_2O_2 concentrations were between 25 and 35 ppb. These scientists thought that it would be very interesting to determine H_2O_2 concentrations in the early morning prior to sunrise and obtain complete diurnal variation of H_2O_2 concentration. Up to date no overnight data have been reported. It has been shown that there was some interference in the chemiluminescent method (Heikes, 1984; Heikes et al.,1982). It is difficult to measure the H_2O_2 concentrations by this method accurately. The automated fluorometric method developed by Lazrus et al.(1986) is more advanced. The automated fluorometric method is employed in our study. The purpose of this investigation was to measure the H_2O_2 concentration in 24-hrs on clear and cloudy days, to find the diurnal variation of H_2O_2 concentration. In addition, the relationship between concentrations of O_3 and H_2O_2 was investigated. #### II. EXPERIMENT Field experiments were carried out at two sites, on Lushan Mountain in May 1987, and in Beijing in August 1987 and in December-1986. May is the rainy season on Lushan Mountain. Every day seems rainy and foggy. Overnight measurement of H_2O_2 was difficult. Most of the data of H_2O_2 were obtained in daytime. However, the H_2O_2 concentration in Beijing were measured day and night every day. The automated fluorometric method for measuring gas-phase H_2O_2 was used. This method is based on the selective catalysis of H_2O_2 and p-hydroxy-phenyl-acetic acid (POPHA) with horseradish peroxidase to form fluorescent dimer of POPHA (6.6'-dihydroxy-3,3'-biphenyl diacetic acid). The dimeric product fluoresces with a peak excitation wavelength of 320 nm and a peak emission wavelength of 400 nm. The fluorescence intensity of the dimer is directly proportional to the peroxide concentration. Peroxidase also catalyzes the reaction of organic hydroperoxides to form the fluorescent dimer. To discriminate $\rm H_2O_2$ from organic hydroperoxides, a novel dual-channel chemical flow system with a dual-cell fluorometer has been used. In the first channel the total hydroperoxide was determined, and the organic hydroperoxide in the second channel was measured by adding the enzyme catalase to selectively destroy hydrogen peroxide before the peroxidase-catalyzed reaction occurs. The concentration of $\rm H_2O_2$ is then determined by the difference between fluorescence signals obtained without and with added catalase. The method can measure the $\rm H_2O_2$ automatically and continuously. Details of the method can be found in Lazrus et al.(1986). ## III. RESULTS AND DISCUSSION The variations of the concentration of H_2O_2 with time are shown in Figs. 1,2 for Lushan Mountain and in Figs. 3,4 for Beijing. It was found that the concentrations of H₂O₂ on Lushan Mountain are higher than those in Beijing. The maximum concentration on Lushan Mountain was 4.32 ppb, while the minimum was 0.50 ppb. The maximum and minimum concentrations in Beijing were 1.49 and 0.05 ppb respectively. The difference might be due to many causes that are related to the production of H₂O₂. The major gaseous sources of H₂O₂ in the troposphere are reactions of ${ m HO_2}$ and hydrated ${ m HO_2}$ radicals (R1-R3) (McElory, 1986). ${ m HO_2} + { m HO_2} \rightarrow { m H_2O_2} + { m O_2}$ $$HO, +HO, \rightarrow H, O, +O,$$ (R1) $$HO_2 + HO_2 \xrightarrow{} H_2O \cdot HO_2$$ (R2) $$HO_1 + H_2O \cdot HO_2 \rightarrow H_2O_2 + H_2O_3 + O_2$$ (R3) Fig.1. Ambient H₂O₂ concentrations measured on Lushan Mountain. Fig.2 Diurnal concentration-time profile for H₂O₂ on Lushan Mountain. The reaction of hydroxyl radicals with carbon monoxide (R4) leads to the formation of HO_2 via the recombination of H atoms with O_2 (R5). $$OH + CO \rightarrow H + CO_{2}$$ (R4) $$H + O_2 + M \rightarrow HO_2 + M$$ (R5) In the polluted atmosphere there is a strong competition for HO_2 radicals by NO (R6). $HO_2 + NO \xrightarrow{\longrightarrow} NO_2 + OH$ (R6). (R6) Fig.3. Diurnal concentration-time profiles for H₂O₂ in Beijing. Fig.4. Diurnal concentration-time profile for H2O2 in Beijing. Therefore, the rate of H₂O₂ generation is a complex function of NO, CO, hydrocarbons and aldehydes by which HO₁ is derived or destroyed. Extensive investigations on the kinetics and mechanisms of R1 have been carried out (Paukert and Johnston,1972; Hochanadel et al.,1972; DeMore,1979; Cox and Burrows,1979; Lii et al.,1981). The acceleration of H₂O on the reaction was first reported by Hamilton and Lii (1977) who suggested that the reaction of a hydrogen-bonded complex with HO₂ (R3) was more efficient than that of two hydroperoxy radicals. An enhancement by a factor of about 3 in the rate constant of second order reaction (k) has been found for relative humidities approaching 100% (Calvert and Stockwell,1983). Thus, the concentration of H₂O₂ in the troposphere depends not only on the concentration and type of pollutants but also on the water content. Based on the natural conditions and air pollution situation, it can be predicted that the concentrations of NOx on Lushan Mountain maybe are relatively lower, and the water content is relatively higher. Conversely, the concentrations of NOx in Beijing, maybe, are higher, and the water content is lower. Field measurements showed that: On Lushan Mountain the concentrations of NOx were 1.85×10^{-3} to 5.93×10^{-3} mg/m³, SO₂ concentrations were 1.92×10^{-4} to 1.23×10^{-3} mg/m³, and the relative humidity 90-100%, while in Beijing the concentrations of NOx were 1.0×10^{-2} to 1.4×10^{-1} mg/m³, SO₂ concentrations 1.89×10^{-3} to 1.30×10^{-1} mg/m³, relative humidity 40-90%. Therefore, it is reasonable that the difference of H_2O_2 concentration between Beijing and Lushan Mountain was caused by the different situation of air pollution. The maximum concentration of H_2O_2 was not found at midday, but at about 20:00 in the evening, while the minimum was found at the early morning. The similar tendencies were observed by Kok et al.. This pattern of concentration variation might be caused by two reasons. First, H_2O_2 can be photolyzed in the day. Second, the relatively rapid removal of HO_2 radicals by NO (R6) competes the rapid reaction (R1) and (R3) until all the NO is converted to NO_2 and other products. This takes place at later afternoon and during the nighttime because the reaction (R7) converts NO to NO_2 very effectively. At this time HO_2 is generated by Reactions (R 8–10). $$O_3 + NO \rightarrow O_2 + NO_2 \tag{R7}$$ $$NO_2 + O_3 \rightarrow NO_3 + O_2$$ (R8) $$NO_3 + CH_2O \rightarrow HONO_2 + HCO$$ (R9) $$HCO + O_2 \rightarrow HO_2 + CO$$ (R10) 100 0, H₂O₂ 80 H₂O₃ 8 Fig.5. Theoretical time dependence of H_2O_2 in the various two-day polluted air scenarios A-H. Fig.6. Ambient O₃ and H₂O₂ concentrations measured on Lushan Mountain. Our results are similar to that of theoretical calculation by Calvert and Stockwell (1983). The calculated $[H_2O_2]$ diurnal variations for various polluted air scenarios A-H (Table 1) are shown in Figure 5. Theoretically, H_2O_2 generation is expected to occur even at nighttime in cases A and F. In all other cases, the H_2O_2 generation at nighttime is unimportant. Thus, it is easy to explain the maximum H_2O_2 occurred late in the day. The polluted air mass in Beijing is similar to A, while that on Lushan Mountain is similar to F. Experimental result shows that H_2O_2 concentrations are not proportional to O_3 concentration. Generally, concentrations of H_2O_2 declined more slowly than those of O_3 after the O_3 maximum. (see Fig. 6). Measurements of H_2O_2 were also carried out in Beijing in December 1986. The results show that H_2O_2 concentrations are very low, about 0.01 ppb, without distinct diurnal variation. This is caused by the fact that both ultraviolet radiation and relative humidity are relatively low in winter. In addition, the combustion of coal in winter leads to an increase of SO_2 that reacts with H_2O_2 . It is concluded from our experiments that although hydrogen peroxide is the product of photochemical reactions in the atmosphere, its concentration depends largely on the generation of HO₂ and the water content in the air. ### IV. CONCLUSIONS - 1. The concentrations of H_2O_2 on Lushan Mountain are higher than those in Beijing. This may be explained by the lower NOx concentration and higher water content on Lushan Mountain. - 2. The maximum concentration of H_2O_2 occurred at about 20:00 in the evening, not at midday, while the minimum occurred at the early morning. - 3. The field observations are similar to the theoretical simulation by Calvert and Stockwell. - 4. The ratio of concentration of H_2O_2 to that of O_3 was not constant. H_2O_2 concentrations declined more slowly then that of O_3 after the O_3 maximum. Table I.Initial Concentrations and Emission Rates for Pollutants Used in the Two-day Simulations of Tropospheric Chemistry | | | | Conc | Concentration (ppb) | | | | | |----------------------------|---|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | Reactant | V | 8 | C | D | n | Ā | G | Н | | , ON | 25 | 2.5 | 0.25 | 25 | 2.5 | 2.5 | 0.25 | 0.025 | | ON | 75 | 2.7 | 0.75 | 7.5 | 7.5 | 7.5 | 0.75 | 0.075 | | 00 | 2000 | 2000 | 2000 | 200 | 001 | 200 | 100 | 100 | | Alkene | 100 | 100 | 001 | 10 | 1.0 | 10 | 1.0 | 0.10 | | Alkane | 400 | 400 | 400 | 40 | 4.0 | 40 | 4.0 | 0.40 | | °O | 30 | 30 | 30 | 30 | 96 | 30 | 30 | 30 | | СН1О | 20 | 20 | 20 | 2.0 | 0.2 | 2.0 | 0.2 | 0.02 | | СН3СНО | 01 | 01 | 10 | 1.0 | 0.1 | 0.1 | 0.1 | 0.01 | | Ketone | 5 | 5 | 5 | 0.5 | 0.05 | 6.5 | 0.05 | 0.005 | | SO ₂ | 09 | 09 | 09 | 9 | 9.0 | 9 | 9.0 | 90.0 | | CH, | 2500 | 2500 | 2500 | 1400 | 1400 | 1400 | 1400 | 1400 | | H ₂ O (relative | $\rm H_2O$ (relative humidity) varied from 10% (3.12 \times 106 | from 10% (3.12) | < 106 ppb) to 100% | $(3.12\times10^7$ | (qdd | |
 | | | Rates of emiss | Rutes of emission (ppm min-1 | | | | | | | | | NO ₂ | 1.74×10 ⁻⁵ | 1.74 × 10 ⁻⁶ | 1.74×10^{-7} | 1.74×10^{-5} | 1.74×10^{-5} | 1.74 × 10 ⁻⁶ | 1.74×10^{-7} | 1.74 × 10 ⁻⁸ | | ON | 5.21 × 10 ⁻⁵ | 5.21 × 10 ^{−6} | 5.21 × 10 ⁻⁷ | 5.21×10^{-5} | 5.21 × 10 ⁻⁵ | 5.21 × 10 ⁻⁶ | 5.21 × 10°7 | 5.21×10^{-8} | | Alkene | 6.94×10 * | 6.94 × 10 ⁻⁶ | 6.94×10 ⁻⁶ | 6.94×10^{-7} | 6.94 × 10 ⁻⁸ | 6.94 × 10 ⁻⁷ | 6.94 × 10 ⁻⁸ | 6.94×10 [→] | | Alkane | 2.78×10 ⁵ | 2.78×10^{-5} | 2.78×10^{-5} | 2.78 × 10 ⁻⁶ | 2.78 × 10 ⁻⁷ | 2.78 × 10 ⁻⁶ | 2.78×10 ' | 2.78×10^{-8} | - 5. Hydrogen peroxide concentrations are very low and without significant diurnal variation in Beijing in winter. - 6. The generation of H₂O₂ depends largely on the HO₂ concentration and the water content in the atmosphere. #### REFERENCES - Bufalini, J.J. et al. (1972). Hydrogen peroxide formation from formaldehyde photooxidation and its presence in the atmosphere, Environ. Sci. Technol., 6: 816-821. - Calvert, J.G. and Stockwell, W.R. (1983), Acid generation in the troposphere by gas-phase chemistry, Environ. Sci. Technol., 17: 428A-443A. - Cox, R.A. and Burrows, J.P.(1979), Kinetics and mechanism of the disproportionation of HO₂ in the gas phase, J. Phys. Chem., 83: 2560-2568. - Crutzen, P.J. and Fishman, J.(1977), Average concentrations of OH in the troposphere, and the budgets of CH₄, CO, H₂ and CH₂CCl₃, Geophys. Res. Lett., 4: 321-324. - DeMore, W.B.(1979), Reaction of HO₂ with O₃ and the effect of water vapour on HO₂ kinetics, J. Phys. Chem., 83: 1113-1118. - Gay, B.W., Jr. and Bufalini, J.J. (1972), Hydrogen peroxide in the Urban atmosphere, Environ. Lett., 3: 21. - Hamilton, E.J. and Lii, R-R. (1977), The dependence on H₂O and on NH₃ of the kinetics of the self reaction of HO₂ in the gas phase formation of HO₂: H₂O and HO₂: NH₃ complexes, *Int. J. Chem. Kin.*, 9: 875-885. - Heikes, B.G. et al., (1982). Evidence for aqueous phase hydrogen peroxide synthesis in the troposphere, *J. Geophys.* Res., 87: 3045-3051. - Heikes, B.G., (1984). Aqueous H₂O₂ production from O₃ in glass impingers, Atmos. Environ., 18: 1433-1455. - Hochanadel, C.J. et al., (1972), Absorption spectrum and reaction kinetics of the HO₂ radical in the gas phase, J. Chem. Phys., 56: 4426–4432. - Kok, G.L. et al., (1978), Ambient air measurements of hydrogen peroxide in the California south coast air basin, Environ. Sci. Technol., 12: 1077-1080. - Lazrus, A.L., et al., (1986), Automated fluorometric method for hydrogen peroxide in air, *Anal. Chem.*, 58: 594-597. - Lii R-R. et al., (1981). Temperature dependence of the gas phase self-reaction of HO₂ in the presence of H₂O, J. Phys. Chem., 85: 2833-2834. - Martin, L.R. and Damschen, D.E., (1981), Aqueous oxidation of sulphur dioxide by hydrogen peroxide at low pH, *Atmos. Environ.*, 15: 1615-1621. - McElory, W.J., (1986), The aqueous oxidation of SO₂ by OH radicals, Atmos. Environ., 20: 323-330. - Paukert, T.T. and Johnston, H.S., (1972), Spectra and kinetics of the hydroperoxy free radical in the gas phase, J. Chem. Phys., 56: 2824-2838. - Penkett, S.A. et al., (1979), The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulphur dioxide in cloud and rainwater, *Atmos. Environ.*, 13: 123-137.