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ABSTRACT

By means of vertical normal modes a regional nested multilevel primitive equation model can be reduced 1o sev-
eral sets of shullow water ¢quations characterized by variows equivalent depths. Therefore, time integration of the
mode} in spectral form can be performed in the manner similar to those used in the spectral nested shallow water

equation model case.
L. INTRODUCTION

In a previous paper, the author proposed a scheme for integrating a regional spectral
nested shallow water equation model, in which a method of spectral expansion in a limited
area without any additional conditions, and a set of spectral equations were given.

This paper is a continuation of the previous one, with a view of extending its scheme to a
multilevel primitive equation model case. For this purpose the multilevel primitive equation
model has been reduced to several sets of shallow water Lype equations by means of vertical
normal modes, in order to use the techniques in the previous paper to carry out the corre-
sponding time integration. In the previous paper, however, the mean depth of the fluid sur-
face, equivalent to the height of the homogeneous atmosphere, is a constant; the time step se-
lected in the explicit case is quite small under the constraint of the linear computational stabil-
ity criterion. In this paper, on the contrary, the possibility of selecting a time step larger than
usual one greatly increases, owing to the equivalent characteristic depths of the shallow water
type equations, except few cases, being far less than the height of the homogeneous atmos-
phere. For this reason, the scheme given here might save much computation time and keep
reasonable accuracy for a muhilevel primitive equation model.

1. VERTICAL COORDINATE, VERTICAL DISCRETIZATION AND VERTICAL
BOUNDARY CONDITION

1. Vertical Coordinate

Ln the vertical the g—coordinate defined as
-2
= a1
P,

is adopted, where p isthe pressure; p, the surface pressure.
2. Vertical Discretizaiion of the Model Aimosphere

Usually the vertical discretization of the model atmosphere can be determined from the
object of prediction and objective conditions. Now we discuss a general case. It is assumed
that the atmosphere is divided into K layers (see Fig. 1). At each integer level the wind
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components v and v, the temperature T and the geopotential height ¢ are predicted,
while the vertical velocity ¢ is computed at each half level.
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Fig. 1. Discretization of the model atmosphere.

However, the thickness of each layer Ac, (=0, ,,, —0o,_, ;) may vary with £,
1Y
but ) Ag, =1.
k=1
3. Vertical Boundary Condition
At =0 and 1, the homogeneous boundary condition
g=10 3]

is adopted.
III. DYNAMIC AND THERMODYNAMIC EQUATIONS

At o,~level the dynamic and thermodynamic equations in the adiabatic and inviscid
case may be written as

v, G,
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—g——'_a?*ka+(N,)* (4)
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a—f =Ad, (p)—D, —(3,6), (6)
d _

GL) = —RT, (M

Utilizing the vertical boundary condition (2) and summing up the continuity equation (6)
from k=1 to K in the vertical, we have

ap X . K
e *Z-:IAdk (P)As, — l}; D As, (&)
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where T=T+ 7, T= f(o), G=(p+RFP, P=lInp . ij =Acrj ’a,, U=u/l. V
=v./1, { is the magnification factor of conformal map projection, Ad(F)= — S(U;;
+ V% JF. S=1", F a cerlain meteorological element, D =S(3U/8x + &V /dy), 6,6
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.

Gy )srs2= EAdj(P)Aa}, —0, 12 ;Adj(P)Aaj (12)

V. SETS OF SHALLOW WATER TYPE EQUATIONS
1. The Thermodynarmic Equation and the Hydrostatic Equation in Matrix Form

If the vertical advection term is approximately replaced by

0E 1 . .
(02, ) z2Aak GprrraEict TED T 0l _E¢—1)] 13)
then the thermodynamic equation (3) can be expressed in a matrix form
T _FD+N, (14)
24

by use of Egs. (6) and (7). Here E represents U,, V.. T, and so on, T=(T,,

T,onT,) D=(D,, DyD,) Ny = (N )y (N, (N,),)", the  superscript
T represents a transpose, F a malrix whose elements are functions of Ao, C; and T.

For the hydrostatic equation (12), the difference scheme developed by ECMWF is
adopted (1980), namely

K
(pk=rp$+RzB”T1 (15)

where By, is only related to ln[(ch.Jr lle)/(:7}._1/2)], ]n[{a“l”)/(akfuz)], o, and ze

ro. In this way, the above equation in the matrix form is
=9 +BT (16}

where @ =(¢,. rpz,"-qok)r, e, =le,, (ps,---qos)T, B is a matrix with By/s as its ele-

ments.
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2. Shallow Water Type Equations

From Eqgs. (8), {14) and (16), we have

G
S = —CD+N, (n

where G=¢+ RTP, C=BF+RTA", A" =(As,, Ae,,~Ac,), N, =BN
+ RTA Ad(P), Ad(P)=(A4d (P), Ad,(P), Ad (p)) .

Let the latent values of the matrix € be 4, 1, - lg, ordered from the largest to

the smallest, and their corresponding characteristic vectors be W, W,, - Wy,
A=diag(d,, 2,,4,)

T

3
and
W:(W]s wz!‘"WK)
then
wolcw=A
Making the transformation
E=w'E (18)
Egs. (3}, (4)and (17 becom(’g_
ag @
it +fP+ R, (19)
ap File;
—a';--‘a;—f(j-}-]vv 20
G _ PO
= —AD+R, @n
respectively, where E represents U, V, G, D, N ,or N, U=(U,, U,, "'Ux)r, 14
=SV, V) N =N ) (N ), e (N TN

T
=[N V), o (V)
Egs. (19)—(20) are the shallow water type equations characterized by various latent val-
ues {or equivalent characteristic depth) 2, (§=1,2, K).
Asfor P and 7, theycan be rewritten as

%—f: AT Wh+AT 4d 22)
and a
T o -
L —rwb+N, (23)

¥. SPECTRAL EXPANSION AND SPECTRAL EQUATIONS
1. Spectral Expansion

Based upon the results of the previous paper, any function F(x, y) defined in the do-
main RO0<x<x,,0<y<y,) canbeexpanded as
Fixg)=Fxpy+ LF, )™ + LLF, ™77, (24)
where r’i=2Am:r/Lx, r’i=2mz/Ly, L =x,., Ly =Yy
Fx, py=x{Flx, . y}—FO, ¥/ L .

Fr)=)IF,0,)~F, 00/ L,
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— X

dx,

Ll
FL0)=7 J [P, 9) - Fox. e
0

x

=——J 7, 00— F, e "dy,
(24} is the basic expression in this paper. In the following all the meteorclogical elements con-
cernred will be expanded by using itin K.
2. Spectral Equations
{1y The explicit case

With the help of replacing the time derivatives by the central differences, Eqgs. (19)—(21)
in a component form are given by

o =0 - Z(QQ)?AH P A+ 2R ) A, (25)
ptl=p —2(ﬁ)‘m 20, A+ AR )\ AL, 26)
G =@ 20 B A+ 2R ) A 27

In the below the transform method will be used 1o obtain the numerical solutions of the
dynamic and thermodynamic equations. For this purpose, at first replacing F in (24) by
Uy, ¥ G, Ty, P and 5 respectively, and expanding them in R, we can find the values
of D, (¥}, (¥), aod (N}, at the gridpoints. Then by means of the transforma-

tion (18), the values of T, ¥, ¢,,.0,, (¥ ), (F,), and (R}, can be found. Thus

expanding them and substituting those expansions in Eqgs. (25)—{27) and neglecting their
superscripts and subscnpts we can obtain the spectra] equations.

AR TR S A / (28)
ity t Bm +V,_ + Vm {29)
G''=g+Cl +G  +G), (30)
where
Al =2A{—iRG +(N ),

L, af
~ 1 A R B N T _ 1
0o =1L L L {U 0 428~ -Gty )

= dmax +Ay)

- G(0, y)')+(f?ru)‘l7fe dxdy,

U’ =-4J‘ { T gt f M- RG] +(NH),:"]}
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— i ~#y)

dxdy

L)_ aG'af
pro=L | Tt vt oA e )0
L 3 ™ n ay vim

e _md_}’
C,, =28=3D_ +(N,),,,)

L L
-~ 1 y ! ~t—1 AT+l o~ L ¢
G =71 f I {G -G +2A:[—AD (N ) ]}
¥ 0 0

— i + M
ce T g dy

L
5t ] ' T T+ .7 T
GM=L—J. {Gm ‘-G, '+2At[-ile +(N,), ]}
[

»

e ™ ay.

It can readily be seen that in the integral expressions of o the integrands in the
braces are all related to boundary values. Thus they may be taken as known and can be found
analytically. It can also be seen that the spectral equations {28)~(30) are similar to those of the
shallow water equations in the explicit case, if we replace @, by A and ¢ by G. There-

. - 1 i 1
fore, from the ahove equations we can obtain U: . 't and G;: from the values of

mn

such quantilies at the instants t and 71—l, and then obtain U, ¥ and & by using the
boundary values provided by the coarse grid prediction.

(2) The semi—~implicit case

In the semi—implicit case the component equations (19)—~21) in differential—-difference
form are as follows.

o~ 4 -t aé T+ 66 T T
ot =0 ‘—[(axj) ‘+5h) ‘]At+2(ﬁ“)jm @1
st - EG T aG T T
7 =0 '—[(—Ej)“ﬂ—ay-h) ‘]A:+2(ﬁ*,)jm 32)
G =G BT B DA+ 2R ) A (33)

Neglecting the carets and the subscripts, and eleminating D™’ from the above equa-
tions immediately gives

A-a "' =H (34)
where
aNT BN
I T 2,11 # v
H—Aré 20" N, —(A+a )G +2(—__5x +———ay )
x hy
r__1
¢ TSiAr
2 b
A—‘-% +2—' .
fx 'y

With manners similar to those used in the above, the spectral equations below are given
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by
6t = —;:2+—;2—+~—2(H R +A) (35)
where
N [ﬁ_(A—az)GhHI]e_mnﬁy}dxdy,

L,. .
ﬁ;sz—l-J. {H +(m +a }G'T l}e_“yd}'-
¥ [

After obtaining G;:] from (33), we can get E’M by use of G;;l and boundary
values. Repiacing &, in the spectral Eqs. (28) and {(29) by (";‘: .» Wwe obiain

T+1

U and V', where G, =(G! '+ G ')/2.

Asfor T ard P, if they are expanded as F in the expression (24), then from Egs.
(22) and (23) t.he corrmponding spectral equations are given by

PPl ATy, - WD+ B A+ P+ B, (36)
and

T = pw B+ BT DA+ 2ANN ), A+ T 4T (7
where

T
Ad, =((Ad,,,,,)], (4d,,.},. ‘“(Ad),,)x) .

. r
5mn 2((ﬁmn)!’ (ﬁmn)l’ m(ﬁmn)x) *

L
Fm.,‘:L T {Pr—l_ﬁr+l+AT[2AHf_W(B1:+]
+57" )]At}e - mrﬁy}dxdy,
~;M=LL { Sttt v AT - BT
+ ﬁ; o )]At}e “dy,
L, oL, .
~ ~r— A~ -
Fn=1 11_ j {T L Ew BT 40T A
x "y 0 )
+ 2R, Az}e TR xdy,

L, B
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0

+AN D" At}e ™ dy,
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T
5. =((5;>. B, ---(5;)K) .
.
Ad =((Ad;),, (4d)),, =~ (4d, L:) ,
F
(ﬁr)mn :((NT)mn,l’ (NT)mn,Z‘ {AAIT)MH.K) :

..
(ﬁr)=(<ﬁf>], ¥y, = (ﬁ,),{) ,

.
Ny =((N,),,,,,, (N )y ™ (N,),;X) :

VI. TIME INTEGRATION

In the previcus paper the computational stability of the linearized spectral shallow water
equations was discussed under periodic conditions. The resuits are as follows.

{1} In the explicit case

The inequality .
Acs{aﬁﬂ%(ﬁz +a3)+ﬁ} (38)

holds, where i is the speed of the basic current and ¢, the average depth of the fluid sur-
face.

(2} In the semi—implicit case

— Az At (39

Table L. Latent Values and Characteristic Velocities

i A7 glm) Cim / s)
1 9760.0 309.3
2 2676.5 1620

3 545.6 7.1

4 1812 42

5 62.1 47

6 19.8 139

7 12 8.4

8 24 48

s 0.5 2.2

holds, where Ar,, is the permitted largest time step obtained from the inequality (38).
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It can be seen by comparing the shallow water equations with the component equations
{19)—(21) that the latent value 4; isequivalentto g,

According to the compitations made by Yao (1988), when 7 = 300K and X
=G, ﬂ.j /g and its characteristic velocity C,(= J? ) are shown in Table 1. It will be sgen

from the table that the latent value rapidly decreases with J ; except the first few values, most
characteristic velocilies have the same magnitude as the wind velocity. Considering the com-
putation time taken in time integration in the explicit case less than that in the semi—implicit
case, and the stabile integration with a large time step by use of the semi—implicit technique
achieved at the expanse of large errors, in order to keep reasonable accuracy and save compu-
{ation time, we may adopt the strategy suggesied by Burridge (1975), namely, to make inte-
gration by using the explicit technique for the equations with smaller latent values and by us-
ing the semi~implicit technique for the equations with larger ones. Of course, in practice, the
selection of the time step and the integration technigue should still be determined by tests.
However, the above results may be taken as a preliminary guidance.
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