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ABSTRACT

A solution of the nonlinear problem for determining the wind velocity in [rictionless atmosphere (the gradient
wind) under given geopotential {pressure} field is proposed. The approach is amalytical and is based on quadratic
pelynomial approximation of the geopotential field and linear approximation of the wind velocity field with respect to
x and 7y, the coefficients of the expansions being functions of the time 1 The derived system of ordinary
nonlinear differential equations is analyzed as a dynamical system. Exact analytical solulions are found for some par-
ticular cases, Sotne of their properties bear a resemblance to those or really existing atmospheric vortices (cyclones

and anticyclones).
L INTRODUCTION

Consider the equations of two—dimensional motion in isobaric (p) ccordinates (Panchev,

1985)
BU/ &+ UBU / dx + VAU / 8y —fV = —8H / éx,

BV /St + UV / Ex+ VeV /8y +fU= —8H / dp, a.n
where H(x,y) is the geopotential of isobaric surface p=const. Equations (1.1) are nonlinear
and for arbitrary H{x,y) analytical solution is impossible. However, il has been long ago
observed (see Y oung, 1986; Cushman—Roisin, 1987} that if

Hixy)=Hoo + Hiox + Hay +3 Hux" +3 Hap® + Huxy, (12

then
Ulxp )= Uy + U1 (x + Uy (),
Vi, ty= Vg + Vi (O)x + Va(0)y. (1.3)
The gradient wind with constant horizontal shear (1.3), subject to investigation in the
present paper, is a theoretical idealization (hypothetical motion) implied by the special
mathematical structure of the momentum equations (1.1). Strictly speaking, such a motion
does not exist in the real atmosphere. Nevertheless, more than a century this mathematical
problem attracts the atiention of the applied mathematicians and geophysical fluid
dynamicists. Most of the publications based on the method of polynomial approximations
(1.2), (1.3} are in oceanographic aspect. Very few concern the atmospheric dynamics: such as
Bagrov {1947); Benton, Lipps and Tuann (1964), Panchev and Spassova (1988) etc. It seems
to us that now, in the era of numerical methods, the interest to this method of solution is in-
creasing mainly by two reasons—analytical attractiveness and proximity of the modef resulits
to some observed situations in the atmosphere.
It is well known in meteorclogy (Petterssen, 1956), that over limited area around the
point (0,0), a large variety of geometrical configurations of the isobars or streamlines which
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are observed on the weather maps can be approximated rather well by the above expressions
(1.2), (1.3). This empirical fact warrants the assumed mathematical structure of the solution
(1.2), (1.3). To eliminate the simple translation motion we assume

w=Hyx=0 and U ()=V,()=0 (1.4}
Therefore, the isohypses are assumed essentially curvilineal and the geostrophic component of
the motion is excluded from the solution.

In such a formulation this problem was studied by us earlier (Panchev and Spassova,
1988). We are continuing this study. In section II steady solutions are obtained. The nonlinear
nonstationary problem is considered in section III. Each section contains also discussion of
the results.

1. GRADIENT WIND-STATIONARY SOLUTION
Upon substituting {1.2), (1.3) into (1.1} one cbtains
U tU U+ VU, —fi= —Hy,
Vet UV, +)+V, V= —Hy, {2.1)

where k=1,2 and{ - )means d/dr. We shall use the variables proposed by Ball (1965}
D(:) =3y / 8x + 8V / dy = U (1) + V,{£) — divergence

Uy =3V / dx — eU / dy = ¥, (1) — U, () — vorticity
F(1)y=0U /0x — 8V / 0y = U, {1) — V,(¢) — deformation

M()=8V /dx +dU / &y =V, () + U, {#) — deformation 2.2)
. S§=H,+H,, R=H,—H,, @=2H;. 2.3)
Obviously
U, =D+F, ¥, =M+
W, =M—(, 2V, =D-~-F. 2.4)

In these variables the transformed equations are not simpler than (2.1), but in some aspects
are more convenient for analysis and interpretation:
{=-Dy+0),
F= —DF+{M— R, 2.5
M=—DM—fF—0Q,

D=f— S——(D +ME AP0

. In case of closed isolines of the H—field, additional rotation of the coordinate axes can make
Q= 0. We assume this and hereafter the coordinate system is fixed. o
The steady solution of (2.5) will give the _gradient wind charactenstlcs i, F, M, D,
and through (2.4) — the coefficients U, and ¥, in(1.3). With {=F=M= b =0, the
vorticity equation in (2.5) (the first one) implies two mathematically possible cases:
CASE A. Nondivergent gradient wind — D=0. Then
F=0, M=R/f, D +2T-QS+R* /fH)=0. (2.6)
Only the solution corresponding to “+” 51gn is physma}ly reasonable
T=—f+(f +25+R /Y 2.0
For 5>0 (cyclonic pressure distribution) { exists always and is positive ({>0). However
in case of anticyclonic distribution (§= —|§| <0) some restrictions are to be imposed on
R and § for { from (2. 7) to be real and negatwe
RE/F <2SI<fF+ R /1 (2.8)
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CASE B. Divergent gradient wind {D=0) with vanishing absolute vorticity 7, =f+] =0.
In this case

M=fR/{{*+D*), F=—-DR/(f*+D%) 2.9)
=¥ satisfies the c&uadratxc eguation
Y 4+ 22 + )Y+ ( +25° +RY)=0.
A positive solution exists only if §= —|5]<0,, anticyclonic pressure distribution. There-
fore the solution for D must be positive too. We find

and D* =

D= [(Sz _ Rz);/z + S_lelfz
and the restriction for existence is
S|+ (82 —RH 22/
However this mathematical solution is not recognized to have meicorological value and
is not considered further.
Linear stability analysis of the steady solution (2.6) shows that it is stable, which is ot
surprising.

IIi. THE NONLINEAR PROBLEM

a) Nondivergent flow In this case the connnulty cquahon holds

aU/é‘x+6V/6y (ERY]
In view of (1.3) this equation implies that
DN=U {N+V¥,()=0 and D=0. (3.2)

Then the system (2.5) becomes overdetermined—three equations for two unknown functions
F(r} and M(¢):

F=fM—R, M=—fF,

F M =0+ ~25=as >0 3.3
where {=0, ie. {={, =const. Moreover, the initial vorticity {, is constrained to ensure
that a2 =0. The only solution which can meet these conditions is

F(t) = F,cosft + M sinft,

M(t)= M jcosft — Fysinft, (3.4)
provided that R=0 (circular isohypses). Comparing (3.3) with (2.6) we conclude that if [,
=7, then ai =M} + F2 =0, ie. F, =M, =0. Thusweassume {, #[.

Since D(/y=0 one can introduce the stream function y(x.y,f) such that U=
— Oy /By, V=8¢ /0x and compare H(x,») with ¢(x,ys) corresponding to (3.4). For
simplicity, if F,=0, then

H(x,y)—oonsH-H. o +ph), (H, =By, =Hy), (3.5

2
Pyt = i(Mocosft + &7 —%(Mucosft =L’ —%Muxysinft. {3.6)

Therefore, the isohypses are circles, but the streamiines are not unless M,=0.
b) Divergent flow (D(t) #0). In this case the full continuity equation
UQ"—" +V2H —H(BU +

a; 7y o Ty 6.0
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should be associated with (1.1), assuming that H = H(x,y,!), ie. the shallow water system
of equations should be treated with the present technique. Then three additional equations
about R(), 5(s), Q(r) can be derived (Ball, 1965). The resulting system of seven nonlinear
ordinary differential equations can be solved only numerically. However, ignoring equation
(3.7), one can consider the system {2.5) as a mathematical problem only which, despite of the
nonlinearity of each equation, admits exact analytical solution, provided that R=0 =0,
5=5(0#0.
Actually, denoting

=2, s+%f’=s,,

E(y=MY )+ P~ 0, (3.8)
we reduce the system (2.5) to two equations

E= -2DE,

p=-8. —%(E+D2). (3.9)

Eliminating E{() we reach the single equation .
D+3DD+D’ +25,. D+ 8, =0, (3.10)
first derived and studied by Spassova (1988) for a simpler case (f=0).
According to Kamke (1959), the substitution

D=W/W 3.11)
converts (3.10) into linear equation L.
W+25. (W + S, ()W =0 (3.12)
The general solution of the latter is (Kamke, 1959)
W) =C 8. ()+ Co (08 (5 + Cyg3 (1, (3.13)
where g,() and g,{f) aretwo linearly independent solutions of the equation
F+18. (g =0. 3.19)

However, the latter one is the well known classical equation of linear oscillator, which can be
salved analytically for some particular form of the function §, (¢), including the simplest
one, S, (f})=S, =const (positive or negative).

Having determined the divergence D(f), the remaining equations in (2.5} {for {,
F, M) become linear and in principle can be integrated (at R = =0).

IV, CONCLUSION

In the present study we stressed on the mathematical aspect of the problem rather than
on the physical one. In doing so we introduced maximum simplification allowing use of ana-
lytical tools only. The main result obtained in the paper concerns the exact {deterministic) so-
Iution of the nonlinear system (2.5) at R=(=0, via the equations (3.9) and (3.10). [t can be
used to test numerical schemes for solution.

This paper was partly completed while the first author was a visiting scientist at Tokai University, Japan.
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