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ABSTRACT

A review on the progress in the research of noanlinear atmospheric waves, especially the noalinear Rossby waves
is made in this paper. Many results reparted here have been obtained in Peking University,

I INTRODUCTION

In the last 20 years, the research on nonlinear cnoidal and solitary waves has been given
much atiention in the mathematics and physics, for which Scott et al. (1973) summarized sys-
tematically. They put forward that both the nonlinearity and dispersicn might also produce
the steady and periodic waves. In geophysical fluid dynamics, the research was first conducted
by Long (1964) and Benney (1966), who studied the barotropic Rossby waves using horizon-
tal shear velocity with the result that the amplitude of waves satisfies the KdV equation.
Redekopp (1977) studied the baroclinic Rossby waves with the result that the amplitude of
waves satisfies the modified KdV equation. Yamagata (1982) studied the weakly nonlinear
quasi—geostrophic planelary waves, he also obtained the KdV equation. Clarke (1971}, Smith
(1972} and Grimshaw (1977) discussed the KdV dynamics of ageostrophic and
semi—geosttophic long waves. Solitary equatorial waves were discussed by Boyd {1980). Chao
et al. (1980) discussed the cnoidal in the barotropic atmosphere. Yano and Tsujimura (1987)
classified the KdV—type solitary Rossby waves which are governed by the KdV equation.

All the above—mentioned researches use the multi—scale perturbation method to find the
suitable approximate solutions when nonlinear and dispersive factors attain equilibrium by
selecting small parameter, Though these studies are significant and can consider the blocking
system as a soliton still, these studies lack physical analysis and select the small parameter
arbitrarily and the method is complicated.

The aunthors (1982) tried to find the exact and asymptotic analytical soluticns of the
nonlinear atmospheric waves by a relatively simple method rather than the multi—scale
perturbation method. We found that not only the Rossby waves satisfy the KdV equation but
also satisfy dispersion relation of frequency~wavenumber—amplitude. This is known as the
KdV—type solitary Rossby waves in the world today. It seems that the blocking systems
which play an important role in the atmospheric circulation are a family of solitary Rossby
waves.

Besides long waves and blocking system, there exist some symmetlric pressure systems in
the atmosphere. To illustrate this point Stern (1975) discussed firstly the planetary eddies and
obtained the exact isolated solution of the steady state barotropic vorticity equation on infin-
ite f—plane, he calls this solution a2 modon which is composed of a coupled cyclone—anticy-
clone systems. Larichev and Reznik(1976) found a moving barotropic sclitary eddy soiution.
Flierl et al. (1980} derived a set of exact solution to the quasi—geostrophic equations by means
of a two—layer model. McWilliams (1980) discussed a particular nonlinear analytical solution
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to the equivalent barotropic equations, he calls this solution an equivalent modon and sug:
gests it as a model of the persistence for at least some blocking events. Swaters {1986) studied
the barotropic modon propagation over slowly varying topography. These theories point out
that the eddy systems are a family of modon eddies.

The soliton and modon are illustrated in Figs.1 and 2, respectively.
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Fig.1. Soliton, Fig.2. Modon (sce Stern, 1975).

1. NONLINEAR ROSSBY WAVES; CNOIDAL WAVES AND SOLITARY WAVES (SOLITON)
L. General Approach, KdV Equation

The linear Rossby waves with horizontal dwer§ent flow satisfy the dispersion relation.

w=—pk /& +I +ig) 2.1

for the case of no basic zonal flow within the f—plane approximation, where w is the angu-
lar frequency, k and / the wavenumber in x and y directions respectively, § the
Rossby parameter taken as a constant Ay ' the barotropic Rossby radius of deformation.

If longwave approximation (k™ (]) is taken that is to say, the condition

k<l + Al 2.2
is satisfied, the dispersion relation (2.1) then is apprommately written by
©—ke= —yk’ (2.3)
where
B 12!43:13, - T *ﬁ? @4
The weak dispersion term Aw=yk’ in the dispersion relation {2.3) produces the term
&4

W in the governing equation of the nonlinear wave, where A4 is an appropriate

3
normalized amplitude, ¢ is an appropriate space coordinate. When the term y%?’:? is bal-

anced with a nonlinear term in the form of Ag;, the nonlinear Rossby wave Is governed

by the KdV equation ,
i +AQ§L +y%g‘§‘;=o, @.5)

where 1 is an appropriale time scale.
Long {1964) first pointed out that the Rossby waves are governed by the KdV equation
(2.5) under an appropriate condition. Redekopp (1977) revealed the nature of the KdV—type
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solitary Rossby waves,
Let us consider the quasi—geostrophic potential vorticity equation in the barotropic
(shallow water) f—plane model, ie.

i} 0
(5 +uge + g KAV =R+ A5 =0, 26)

where ¢ istime, x and y the eastward and northward coordinate respectively, « and
v the zomal and meridional velocities respectively, # the stream function of
quasi—geostrophic flow, V; the horizontal Laplacian.

Setting that au’ sy

= ! - /= __'L , 2...2.

u=uly)+u, v=1v, i 3y V=g .7

where u(y) is the basic zonal current, ¥’ the disturbed stream function, ¥ and + the

disturbed zonal and meridianal velocities respectively. Equation (2.6} then can be reduced to
i _ a8 _.L i 10 a2ys y
3 +| a(y) ax 3x 3 ] (V,,zp F) +Bax =0, 2.8
where .
o“u
=g -4 2.9
B HU ayz ( }

{2.3) implies that when wavelength is large and dispersion is weak the appropriate slow space
and time scales for the wave evoluuon in a frame mowng with the non—dispersive motion are
&= Ez(x*cl), t—EZI, y=y 2.10)
where € is the longwave parameter measuring the ratio of the waveguide scale to the wave-
length. (2.10) is called the G—-M (Garden—Morikawa) transform. using the G—M transform
and perturbation method equation (2.8) can be reduced to KdV equation, the method is
known as the reductive perturbation method.
From (2 10) we have
= = €2 32_ € z c—- 2. %?—
dr dx a¢

g
@t ae’ b
Substituting (2.11} into (2.8), we ha ) )
8 et W _4,_5 AL AT RV S
[Ea +(u c)r—E F» a; 2 ay] (Eagz +5y2 Agy +B&¢ =0 (2.12}

Applying the regu]ar perturbatmn axpansjon

a
5; {2.11;

g=ey, Y, + 2.13)
and subsmutmg 1t into (2.12) we then obtain the following first and second—order equation

d

% c}———lﬁ P +Bd;l]=0 {2.14)

2 8 [y

Q[ cr—il'a’— 1ow2+8w2] (a 7 —Aéw,)+

— aadll a'vbl azwl b a"bl azwl

ot~ (G R (G A ) e

Integrating equation (2.14) with respect to { and takmg the inlegral constant as zero, we
obtain

(it —c) ( 4 -3y )+ By, =0. (2.16)
If u—c #0, equation (2.16) yields
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aZ
i +[Q{y)—l§]=0, @17
Oy
where
&q
B Bo — a_;i
=—= =2 2.18)
u—c u—c
(2.17) is a second—order ordinary differential equation of ¥ (r,£,¥) in y.
By setting
¥ = AL DG(), 2.19
G(y) then satisfies
G
a6 +[Q(y) A,,] G =0. (2.20)
dy
Assuming i, vanishes along the parallels y =y, and y =y,, hence
p=r =0 =y =0 221

The eigenvalue ¢ can be determined when u(y) is given.
Substiztuting {2.19) into (2.1 Sj yields

9‘*‘1[3—2 +(Q@)~A§)¢z

of| a

00) o4 _ P4, L (646 _ a6 04

0 " Y el A 2.22)

Multiplying (2 20 by G(y) wehave
¥

Ga.:[a T +(Q(v) 10) m] |
0) g20d 204, G (9’-9“'26 Gd3 A4 223
i-cC O 8 m av dy* 8¢ .23

Integrating (2.23) with respect to y from y, to y2 and applying the boundary condition
{2.21) we then obtain the following KdV equation

6A 04 24
__— + — = .
RAaf Sag 0, (2.24)
where
j_ Q65 ay
i dy
R=1— (2.25)
I—QG dy
Iszy
S= —;1——"—-—~ (2.26)
I ———QG dy

2. Nonlinear Rosshy Waves with Nondivergent Flow

Similar to the reductive perturbation method, by means of the nonlinear term expansion
(Liu Shida and Liu Shikuo 1982, 1983, 1985, 1987, 1988) we can also obtain KdV equation
and the new dispersion relation which contains the Rossby formula and amplitude is found.

The vorticity equation and continuity equation describing Rossby waves with the
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nondivergent fiow can be written as

B 2 2
5—1(3—;)"'"6—;(5;')*'1301':0 (2.27a)
% +% —0 (2.27b)

in (2.27a) g—; and uga; (g—:) are omitted.
We write the solution of the equation (2.27) as

u=u+ U@, v=V@), O=kx+ly—ot (2.28)

Substituting (2.28) into {2.27) we get
H—o+ki+ kU)W +B,=0 (2.29a)
KU+ =0 (2.29b)

where the symbol primes denote the derivatives with respect to 8,
Integrating (2.29b} and taking the integral constant as zero we have

U= —i- y. (2.30)
Substituting (2.30) into the (2.29a) and eliminating L7 we have
k(w— kii + VW™ =B, V, @.31)

which is the nonlinear equation of ¥
If o —ku + {V #0,(2.31) can be written as

» — by -
| 4 o — kit +19) V=0 2.32)
Setting V"= W,(2.32) can be rewritten as P
V
? — .__.__...___._0 = 3
W to-mim - TW (2:333)
V=W (2.33b)

where F(¥) is the nonlinear function of V. The equilibrium point of (2.33)is ( ¥V , # )
={0,0). Expanding A¥) in Taylor series near t;eteqmlibrium point we have
FiVy=—™2 _p_ 0 e 234
¢ kw—kd) k(o — ki)’ @34
when we take (2.34) until the seoondﬂorder terms, (2?3} then can be reduced to
W=ty - — 235
koKD ke — kY 235
V=W (2.35b)

The above equations can be rewriiten as
Bt B

= - + V. 2.36
kiw — ku)* Kkl — ku) @)
Derivating (2.36) with respect to # we obtain the following equation
o 28,1 vy L ey, @37

k{w — ku)* k(o — kw)
which is the corresponding ordinary differential equation of KdV equation.
Therefore it may be concluded that the nonlinear Rossby waves are governed by the
KdV equation.
The exact solution of (2.37) is

Vg, =V, + (¥, ~ ¥V, )en’

!
n — —
65t e ¥, — V3 tkx + &y —ant), (2.38)

where V/,, ¥,, V', are three real zeros of the cubic polynomial
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PV =V - 3“’ Ik“ v+ B, (2.39)

while en{ ) represents the Jacobi elliptic cosine function. In this sense the Rossby waves
represented by (2.38) are called Rossby cnoidal waves.

When ¥, = V', the solution {2.38) may be reduced to
Wy =22 kil _ 11‘“2‘[ ke oon? | — H‘(;ﬂ“jﬁ (kx + Iy — i), (2.40)

which is called Rossby solitary waves or Rossby soliton, as shown in Fig.1.

From (2.38} it can be seen that the wavelength of Rossby cnoidal waves is
_ Sk{w — ku !2
L= P #ﬁnl(V — V3)K(m), (2.41)

where

2
K= jT———x]2=2 dt (2.42)
N1 —msin“t
is the complete elliptic integral of the first l;’ind. 'Il;hc modulus m  satisfies
2 I 2
- Vi—V, '
Formula (2.41) is a relation of the wave speed of the Rossby cnoidal waves. In addition,
on the basis of the relation between the roots and coefficient in the cubic equation P(V) =0

(2.43)

Vi+V,+V,= ;9—1—"— <0, (2.44)
we then obtain another important relation of the wave speed
w—ki=%(V1 +V2+V3) (2.45)
or
©w_ -, 2
cE-E=u -BI(V +V2+V3). (2.46)

According to {2.41) and (2.46) the wave speed can be determined. Taking L = zf the wave
speed is

ﬁo n2 Vl - Va
e=u+ B AKm) \V, +v, +V, (2:47)
When m—0, K(m)—2 and ¥, V,, the amplitude V', — ¥, 0. If taking V, >0,
2 1 2 2

¥, <0, certainly ¥, ¥, ™0 and V3_.§2_m_—1k£

= ;;_i_g, (2.48)

., so that (2.47) 1s reduced to

which is the Rossby formula.
1t shows that the Rossby cnoidal waves reduce to the linear Rossby waves in case of in-
finitesimal amplitude.

3. Nonfinear Rossby Waves with Semi~Geostrophic Flow

Why % and vao ( ) in (2.27a) are omitted? Why we can not solve the
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quasi-geostrophic potential vorticity equation (2.6} by means of (2.28)? This is due to that
when g—y’i and v (3 )} in (2.27a) are considered or (2.28) is substituted into {2.6) the
nonlinear effect W]Il disappear. That is to say, the horizontal nondivergent or quasi—
geostrophic approximations can not reflect the nonlinear effect.

1n order to overcome this shoricoming and solve the nolinear Rossby waves we apply the
semi—geostrophic assumption that distinguishes between the advecting and advected quanti-
ties and consider that the adwvected quantity is geostrophic but the advecting one is
non—geostrophic.

With the semi—geostrophic assumptior the equations in the barotropic f—plane model
(Liu Shikuo and Liu Shida, 1988) can be written as

a @ ou | 8

('EE-Fua‘Fva )Vz+ﬂoa fz (5:+ V) 0 {2.49)
a 8 @ d

(E +ug +v—~)cp+(co+¢p)(a a;) 0 {2.49b)
2

fo (3—;’; *@) Vig, (2.49¢)

where f, is the Coriolis parameter and taken as a constant, and

ct =gH, p=_gh. {2.50)
In (2.50) H and K are the undisturbed scale height and the departure from £
respectively, g is the gravitational acceleration.
Assuming that the sclutions to (2.49) are

=@, v=V(, o=00), f=kx+iy—owt (2.51)
and substituting (2. 51) into (2.49), we get
KX GRU +1V — )" + Bk + fo (kU + 1) =0 (2.52a)
—od + [ (kU+IV)¢'] T+ U+ IVY =0 {2.52b)
fHLkU—VY = ~Ki0" , (2.52c)
where the primes denote the derivatives wﬂh rwpect to & and
Ki=kK+# (2.53)

Integrating (2.52b) and (2.52¢) with respect to & and taking the integral constant to be ze-
ro we have

ku+v=-22_ (2.54a)
g+
kv
KV —iU= ——— | (2.54b)
Jo

Substituting (2.54a) into (2.52a) yields _2
(D 2 Q 4
—wk: (1~ O+ Pk + A 1+ =0, 2.55
‘“( czw) [‘% °“’( ) ] 255

which is an ordinary differential equation of @. From this we can find out @ and then it
is substituted into (2.54), ¥ and ¥ can be ditermined.

The equation (2.55) shows that the semi—geostrophic and barotropic vorticity equation
can reflect the ponlinear effect and overcome the shortcoming of the quasi—geostrophic
model.
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By setting

¥ =] (2.56)

the cquation (2.55) then can be rewritten as
I"” +Q@.n=0, 2.57)

where
oV
Bok (1 +—2) +iw
00,0 = ‘o 1=0. (2.58)
Ko ( 1+ %)
o

This is essentially an ¢igenvalue problem of the nonlinear equation and can be solved
approximalely by Taylor expansion method.
Expanding Q(®, ) in Taylor series in the vicinitgr of the point {®,7)=(0,0}, we have
Bok+Ajew - fok—Ajw
o.n= I+

oI+ 2.59

- mKi - mKi cg @)
If we take Lhe right hand side of (2.59) until the second term, the equation (2.57) is then re-
duced to

k+ 7 k—Age
pyfokthe, Bkl g 2.60)
- COK* - (DK), Cp
or
k— o k+ A2
o 4 Pk R0 g Bk thio,, @2.61)
—wk; e, —~wK;
which is the ordinary differential equation corresponding to the KdV equation, it is formally

the same as (2.37).
It is shown that the semi—geostrophic approximation not only filters out the
inertio—gravity waves as the quasi—geostrophic approximation, but alsc finds out the solution
1o the nonlinear equations. The Rossby waves obtained by the semi—geostrophic approxima-
tion are also governed by the KdV equation.
Similar to (2.38) the solution to equation {2.61) is easily given by
[ Bk — X

Plxg ) =0y + (@, —®,)en’ T (@ — @) (kx + Iy — i) (2.62)
12wK; ¢y
and the angular frequency of the Rossby waves with semi—geostrophic flow is
Pk ( g )2 ( EN: )
0 2K o, +P, +
- _ (m) 1 2 3 (2.63)

9 @, —P ’
Ki+4 (ZKTM)) (:pl Y )
where @, ®, and @, are three real zeros of the cubic polynomial
M—)» ca®’ + B. (2.64)
Bok — Ny
The dispersion relation (2.63) includes both the wavenumber and the wave parameter con-
cerning the amplitude and when m ~>{ it is degenerated into

= — f"k -, (2.65)
K + A

which s the angular frequency of the linear Rossby waves with quasi—geostrophic flow.
In analogy to the barotropic model we can also discuss the baroclinic Rossby wave with

P@®) =0 +
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semi—geostrophic flow (see Liu Shikuo and Liu Shida, 1988).
I1I. NONLINEAR INERTIO-GRAVITY WAVES
1. Genenal Approach, KdV Eguation

The dispersion relation of linear internal inertio—gravity waves is
o =k2N1 +n’ 6.1)
K +nt '
where f is the Coriolis parameter, N is the Brunt—Vaisala frequency, & and n are the
horizontal and vertical wavenumber respectively.

Considering only waves propagating to the right one obiains

] -
k2N2(1+ii)
= ——-—-— . (3.2)
n (1+ }
2
i <N, kK «n® and :—2-}%«1 (3.2) then can be reduced to
o—kc=—yk' + k, 3.3
where _.ﬁ
N - =2
= n’ 7 2]!3 3 - 2N (34}

(3.3) is slightly different from (2.3). However, if the last term on the right hand side is neghgn
ble, then (3.3) is in the same from as (2.3). Therefore the internal gravity waves for k* «n’
satisfy the KdV equation.

Long(1965), Benjamin(1966), Maslowe and Redekopp (1980), Ablowilz and Segur
(1980), Ono (1975) et al. all pointed out that the internal gravity waves in stratified shear flow
are governed by the KdV equation (2.5) under an appropriate condition. For instance, we
consider two—dnmens:onal motion of a Boussmuq fluid for which the equations are

Mol s g—z*—mg (3.52)
e Rt R
%Jrg_:zo (3.5¢)
N N?zpaw=0, (3.59)

where p, is the undisturbed fluid density, p and p are the disturbed density and pres.
sure, respectively.
Setting that

k=ulz)tu, w=w, u’=%§, W= — %%. (3.6)

and
= & 3'7
i 3.7

the equations (3.5} can be written in the form
G; +¥3; )T+ KV ) = (3.82)
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a é
G + )a + Jo) + N’—"i =0, (3.8b)
where
2 &2
V=l
o T ot 3.9
and
J(A, B)—g—A%f- —%—":g—i (3.10)
Applying the transformation
i 3
¢=€e2(x~cr), 1=€24 z=z (3.11)
and the boundary condition
Plems, =0, Yl,-., =0 (3.12)
and seeking a solution in terms of the regular expansion
y=ey, +e’g, + (3.13a)
o0=¢€o, +€5a, + (3.13b)
and admitting the separable solution
¥ = A1) (z), (3.14)
we then obtain the following KdV equation
a“’ + RA%‘—;- + Sa—‘; =0, (3.15)
where
s _ o ®w  _ udtu — ON? 20U
§ —— |- ey 5 - c}"——-" +3N'5 | dz
R==|(u <) dz Z 3z z 3.16)
72 GZ _ 62 '
,I(E—cf I:ZN2 —(u— c}az—;‘:! dz
jGdz
S§=— X . {3.17)
pn 2 7
I(_G 7 [2N2 —(u— c)g—;‘:l dz
M

As the method for obtaining such solutions is essentially the same as for the Rossby
waves we omit its description here.

Notice that the coefficient R vanishes if there is no shear and if ¥ is a constant. It
implies that for such environments the KdV equation emerges only if the non—Boussinesg
terms are contained.

2. Noniinear Internal Gravity Waves

Similar to the Rossby waves, by means of the nonlinear term expansion we can also dis-
cuss the internal gravity waves and other waves (cf Liu Shida and Liu Shikuo, 1982, 1983).
Disregarding the convective terms in (3.5) and assuming that

u=U®B), w=W@), p=P@), ﬁ=n(e), O=kx+nz—ot (3.18)

we get
(—w+ kD) = — kP’ (3.193)

Po
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(—w+kU)W = —;l—nP’—-gI'I (3.19b)
0
KU+ 8B =0 : (3.1%9)
2
(—w+kU}l’l’-—Eg* W =0, (3.1d)

where the symbol prime represents the derivative with respect to 8. Integrating (3.19c) and
taking the integral constant as zero we get

~-Ly. ¢.20)
Eliminating P from (3.19a) and (3.19b) we have

(—w+ kUl — kW)= kgll a.21n

Substituting (3.20) into (3.21{)7 and (3.19d) and assuming that @ — kU #0, we then obtain
U= 5g n=FUI 3.22a
K +n' ) ~w+kl) ( ) 6.222)

L _______sz =

V= ~ T U =) (3.220)

where F and G are the nonlinear functions.
The equilibrium point, which makes ¥’ and I1' vanish, is (U,I1)=(0,0). Expanding
F and G in Taylor series near the equilibriuvm g)omtwe obtain

FUMy= ——*8 -k _np, .. (3.23a)
(k +n)w *? +nt)w?
K N* 2
G(U)‘*--—U+ o+ - (3.23b)
gnw’
Ifwetake F and G until the sezcond terms (3.23) then becomes
U= g KM gy, . (3.240)
(k° +n ) k* +a )w
2 2 ar2
=y BN e (3.24b)
Enw gnw
Eliminating T from (3 24a) and (3. 24b) and neg!ectmg the thll'd termsof [1and U we get
. 3k N KN Pl n (3.25)

T ® A (e’ &* +n* )’
where 4 isan integral constant.

Derivating (3.25) with respect to & we obtain the following equation which is the corre-
sponding ordinary differential equatmn of KAV equauon

v e SN g KN g, (3.26)
K* +n')’ (k6 +n’ )
Therefore the solutions of cnoidal wayes and solitary waves for the internal gravity waves are
K’ N?
u(x,z n)=U, + (U, —-{J‘z)cn2 m(ﬁl —U;)kx +nz— o) . .27
kN '
u(x.z,)= — = © 42 sech? kx +nz —wt), (3.28)
( )= 2k k :’2(31(1{2 +n2) ( )
where U ,U,,U; arethree re-ag z%ros of the cubic polynomial
P =V + 2y —— £~ AU +B. 3.29)

W (k% +ntIN?
(3.28) denotes that the amplltude is in direct proportion to the wave speed.
Similarly, the equations of nonlinear inertia waves may be written as
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T
V=gtV (3.308)

S
V= iU, (3.300)

where the symbo! prime denotes the derivatives with respect to the phase function 8.
IV. COMMON CHARACTER OF NONLINEAR WAVES

1t is clear that (2.33), (3.22) and (3.30) can be transformed into the plane autonomous
systems as follows: .
X=FX.Y) {4.1a)
¥=G(X,1), (4.1b)
where X and Y are the two physical quantities, F and & nonlinear functions of X
and ¥, and X and ¥ the derivatives with respectto 8.
On the basis of our analysis (1987) we conclude that the common characters of the
nonlinear atmospheric waves are:
(1) The famity of the orbit on the phase plane (X,Y) is ciosed and the orbit is a circle or el-
lipse. Precisely because of this, it implies that ¥ and Y are periodic functions and repre-
sent the nonlineas waves. The origin (X, Y) = (0,0} is called the centre point.

(2) The nonlinear functions F and G satisfy
FX,~- Y)= — F(X,Y) {4.22)

G{X,— N=06(X.Y) 4.2b)
which are known as the symmetric theorem and tubular centre theorem. The two theorems
state that the origin (0,0) is a centre point and the motion around the origin is periodical.

(3) The functions X and Y vary periodically with 6, and the periodical solutions have a
general form.

Because F and G are in the same form for different waves and the orbits are also sim-
ilar, therefore the ways in which the waves vary with @ are also simiiar.
(4) Near by equilibrium point (0,0), the periodical solution is the cnoidal waves. The limited
case of the cnoidal waves is the solitary waves.

¥. MODON THEORY

A modon Jiffers from a soliton, it is usually an exact analytic soluticn of the
quasi—geostrophic potential vorticity equation and it is an isolated two—dimensional eddies.
But the potential vorticity has a discontinuous derivative at some order.

we consider the barotropic quasi—geostrophic potential vorticity equation for the steady
motion

Jog) =9, (5.1
where J{A,B) is the Jacobi operator, whzilc
g=Vi-lg+f (5.2)
is the quasi—geostrophic potential vorticity. In J—plane approximation f can be written
as
S=So + Boy. (5.3)

{5.1) implies that ¢ must be constant on a streamline. Thus ¢ must be a function of

¥ ie. .
q=F(), (5.4)
where F{ ) is an arbitrarily chosen function.
Substituting (5.2) into {5.4) we have
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Vi =2+ Boy =G, .5
where
Gl = F()~ [y (5.6)
is also an arbitrary function.
If we choose G(y) as a linear function of zlﬁ, ie.

G = — 4Ly, ‘ .7
the equation (5.5) then reduces to
Vi + 2=~ Byy, 5.8)
where
AF=22—an 5.9

Thus the problem may be reduced to the solution of the linear inhomogeneous Helmholtz
equation (5.8).
in polar coordinates {r, ), weapply t]:ne2 following boundary conditionon r=a

Woea=0. T =0, .10

where the former denotes the condition of free streamline, the latter implies that 7° = (V)
isuniformon r=ua.
The general solution of (5.8) is
= -'E—g—rsin[i + Y 7, (A)A,, reosd + B, sinmbB),  (r<a) (5.11)

=0

where J, is the Bessel function of the m'th order, A, and B, are the arbitrary (at
present) constants,
The first term on the right hand side of (5.11) is a particular solution corresponding to

the inhomogeneous term, — gg—rsine, the second term is the general solution of the homoge-

neous equation of (5.8},
By means of the boundary condition in (5.10) we then obtain readily

Ao
=——-—  B,=8,=-=0, Ay =A, =B, ==0 5.12
Y 7, (a) 0 2 0 1 H {5.12)
and
Jy(Amy=10 (5.13)
Assuming that u, (n=12,...)is the roots of (5.13), we have
da=p, {5.14)
Consequently, the solution of the equation (5.8) satisfying the boundary condition (3.11) is
r
. J _1‘_)
pgasing g
v=- ¢ i r_ujl(ﬂu) (r<a), {5.15)

while the relative vorticity is obtained from (5.8) and (5.12), and for any one of the root of
(5.13) we find
7
n&5

(=Vib= —,Baasin&m . (5.16)

The streamline diagram of the modon obtained from ¢5.15) is illustrated in Fig.2.
Similarly, the modon solution can also be cbtained in plane Cartesian and spherical
coordinates (see Zeng, 1979).
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When the nonsteady term is considered the quasi—geostrophic potential vorticity equa-

tion is given by 2 2 A
—i =
3t +u5§ +VE§ 0. (5.17)
Introducing the transformation
E=x—rct, y=y, {5.18)
the equation {5.17) reduces to
I+ cy.g) =0, (5.19)

which is the same as (5.1) in form, only in a reference frame moving zonally with speed c.
Notice that the modon solution can also be found in exterior region (r > a) and it has
patterns of all kinds.

¥1. STABILITY ANALYSIS OF NONLINEAR WAVES

The authors (1983, 1984, 1985} discussed the stability of the nenlitear internal gravity
waves, internal inertio~gravity waves and Rossby waves and analyzed their topological struc-
ture.

1. Stability of Nonlinear Internal Gravity Waves

Let us consider two—dimensional (x,z) motion of Boussinesq fluid with stratification
p{z) andshear u{z), then the nonlinear equation of stratified shear flow can be written as

?3—1:+(E+a')g—: +wf§:—=—%g§ (6.1a)
X o= —%gg -5 (6.1b)
g_z +"—;_'z" | (6.10)
‘%(%)+(E+u')£;{%)—%z-w=0, (6.1d)

where w and w are the components of disturbed velocity in x and z directions
respectively, p and p are the disturbed pressure and density respectively, N is the
Brunt—Vaisala frequency.

Setting that
u=UB), w=W(6), p=P®), % =T0), 8=kx+nz—wl (6.2)
and substituting (6.2} into (6.1) then yields
(—o+ku+knv+Ew=-Lip (6.3a)
z FZ
(—w+kU + kW = —%nP’—gﬂ (6.3b)
kU 4+ nW =0 ' {6.3¢)
2
(—m+kU+kﬁ)l’I’-—%W=U (6.3d)

where the prime denotes the derivative with respect to 6.
Assuming u(z), g—'zi and N%(z) to be the slowly varying variables and eliminating

W and P from (6.1), we then obtaijn the following autonomous dynamic systems
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ou
kngll + kna v

U=
, +n’ X —w+ ki +kU)
f kN*U _
II'= P ———E =G (U, (6.4b)
where both F and G arenonlinear functions.
The equilibrium point which makes U and IT vanishis {¥/.I1) = (0,0). Clearly, it rep-
resents the undisturbed state. From (6.4) we can see that the phase path equation near the
equilibrium point on phase plane (U,IT} is

= F(UIT) (6.4a)

u
ig.x _ na, +ngil

T (6.5)

N o2, 2
o & 0
Expanding F and & in Taylor series near the equilibrium, (6.4} then can be written as

knEE
U= z U+ hoeg n-
K+ —o+kn) K)o+ k)
2 O
i Ut - kng nv + - (6.62)
k% + ) — o+ ku) & +n*)— o+ ka) )
2 2 ay2
o= kN AN g (6.6b)

gn(—w + k) gn( —w + k)
only the iinear part on the right hand side of (6.6} is taken, it reduces to

du
U= £3s U+ kng m 6.78)
(k2+nz)(2—m+k17) (2 +n*¥ — @+ ki) '
, kN
- kN 6.7b
n gn(—w +ku) v, (6.75)

which is referred to as the linear internal gravity waves. The phase path equation obtained
from (6.7) is also (6.5). It implies that the phase path of nonlinear internal gravity waves is the
same as that of linear internal gravity waves.

Generally lw| »ku >0, the characteristic equation of (6.7) is given by

U
knaz _ kng
k:+n*X—w) ** +n*) —0) |=0o,
2
kN" 0—4i
£na v
(6.8)
namely
P +A4i+B=0, {6.9)
where _
Jcng'£ 292
o k°N
A= , 8= . 6.10)
wi® +a%) o {k* +r%) @10

The characteristic roots of (6.9) are
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=%{—1im}, 11
where
Ri=N*/ {g—f y (6.12)
is the Richardson number.
On the parameter plane (%g , N*) the integral curves in the neighbourhood of the equi-

librium point divide the plane into some domains in which the stability is very different from
each other, It is itlustrated in Fig.3, in which “.” represents the stable equilibrium point, “o”
the unstable equilibrium point. That associated with each path is the direction, indicated by
an arrow in the figure. It shows how the state of the system changes with the increasing time.
The dashed line represents Ri=1/4, .

“ Rv’ 174
‘)J/ Nixi1/4 ;;é
noo% | v
Ill:l.u‘* 5, Tocus Tocue ,f% -
. canwe ¢ <0/d
L7700 el T =
777 1 7 o

vaddie

RAl<D

Fig.3. Stability of nonlincar internal gravity waves.

According to Poincare—Bendixson’s theory, the qualitative property of the second—order
systems near the origin is identical with the first—order systems of equations (6.6). We have
the following conclusions:

the flow is stable for ‘3—‘2‘ <0, N'>D

the flow is unstable for g—: <0, N*<0

the flow is unstable for g—: >0

2. Stability of Nonfinear Internal Inertioc—Gravity Waves

Similarly, we can discuss the stability of nonlinear inertia—internal gravity waves, the
conclusion is as follows:

the flow is stable for %:- <0, LI<0W'>0)orL>L,
the flow is unstable for g—‘; arbitraryvand L <L,
m

the flow is unstable for g—z>o, L2<0 (N >0 or L2Lg,

where L is the horizontal scale, and L, is the baroclinic Rossby deformation radius, it
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satisfies
N H?
Li=~ . 6.13)
’ fi

3. Stabifity of ronlinear Rossby Waves

For the nonlinear baroclinic Rossby waves in two—lzyer model, the conclusion of stabili-
ty is that
theflowisstablefor p>0, and ¢>0
the flow is unstable for p <0, and ¢>0
the flow is unstable for ¢ <0,
where
_2#1(‘-"'"1)("—"«'2) - 2ﬂoﬂz(¢'_‘—’n)
K@ ~am-0 1 kG - oF ~o
while u~' is the baroclinic Rossby radius of deformation and

, B ] , B _
co=u1—2—:;. e =¢q + (gu%f—uf, €2 =co = (ﬁ)’—ui. (6.15)

- 1=, - I [
iy _“"2"("1 +uy) . ='2'(”1 +u5) .

p= (6.14)

¥iI. CONCLUSION REMARKS

From the developmental stages of the studies on the soliton and moden we may see that
on the one hand the rescarches of atmospheric waves have stepped into the nonlinear stages,
on the other hand the researches of nonlinear waves are gradually deepening, from the single
solitary wave to the modon eddies. And a close packed array of non—overlapping modons,
which is called a modon—sea, can also be obtained. The soliton and modon may explain not
only the blocking systems in the atmosphere, but also the oceanic eddies (¢.g., blocking events
or Gulf stream rings). .

A number of further studies are needed to advance the assessmeat of blocks and modons.
The studies on the stability of soliton and modon and robustness of these solution are
vunderway. However, as Flier] et al. (1980) have remarked, it appears that the basic solitary
eddy solutions, unlike plane Rossby waves, are stable and moderately robust. This leads fur-
ther credence to the idea that these solitary wave solutions may be important in the evolution
of isolated disturbances in the atmosphere or the ocean.
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