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ABSTRACT

It is proposed that the orographic stationaky waves are required by long—term balance of momentum in the at-
mosphere with zonally asymmetric orographic forcing, This hypothesis may be confirmed successfully with the theo-
retical model of geostrophic waves. In the Part I, we will explain the observed phase distributions of orographic sta-
tionary waves at middle and high latitudes of the Northern Hemisphere, according to the long—term balance of zonal
momentum over the stationary orographic forcing. It is revealed thal the geographic distribution of stationary waves
depends not only on local topgraphy but also on mean circulation fields and angular momentum fiux in the atmos-
phere. So these waves cannot be simuliated by the models in a restricted arca.

I. INTRODUCTION

The maintenance of climatological stationary waves in the atmosphere requires the nec-
essary mechanisms of heat and momentum balances over zonal asymmetries of exiernal
forcings in a long time period. So the study of stationary waves must be able to explain these
balances physically and incorporate them in a mathematical model. However, the theoretical
studies before did not approach toward this direction because of various difficulties. The most
remarkable representative work on the study of orographic stationary waves was made by
Charney and ELiassen (1949} in a limited f—plane channel. The phase of stationary waves was
determined in their study by conservation of potential vorticity and intensity of Ekman pump-
ing on vorticity. As the damping coefficient was taken a8 a constant, asymmetry of
orographic torque made no influence on their wave solutions. Moreover, as momentum bal-
ance over the zonally asymmetric orographic forcing was not considered, it would be doubtful
whether the obtained stationary waves may exist over a significant pericd in the atmosphere.

Since then, most studies of orographic stationary waves have been made by numerical
experiments, which may simulate successfully in many aspects the observed planetary station-
ary waves (e. g., Manabe and Tenpstra, 1974; Blackmon and Lau, 1980; Tokioka and Noda,
1986 and Blackmon et al., 1987). The results have made it beyond doubt that these waves are
induced mainly by orographic and thermal forcings near the lower boundary. However, the
numerical experiments did not add more understanding substantially in the physical mecha-
nism of stationary waves, except lhe discovery that orographically forced stationary waves,
particularly at high levels, may be simulated well by barotropical models (Held, 1983). Thus,
construction of a theory explaining the atmospheric asymmetries still remains a difficult chal-
lenge, even if some important feedback processes in the atmosphere are ignored and bounda-
ry conditions are simplified.

Unti! recent time, only few analytical studies on stationary waves can be found. Proper-

- ties of the forced waves are used to be studied with variant travelling waves, resulting from
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specially simplified equations. The most impressive consequences of these studies are the ver-
tical propagation of Rossby waves in a channeled f—plane (Charney and Drazin, 1961) and
the meridional ray traces of two—dimensional Rossby waves at a sphere (Hoskins et al., 1977).
Since the model atmospheres employed by these theories were greatly different, they could not
draw a general picture of the circulations associated with stationary waves. We will find from
this study that trap of vertical propagation and the meridional variation of wave phases can
be interpreted in another way if using a different wave model.

We suppose, in the present investigation, that the stationary waves are produced by re-
quirement of long—term heat and momentum balances cver zonally asymmetric forcings. This
mechanism will be incorporated in our mathematical model. According to the fundamental
fact that large scale waves in the atmosphere are characterized by hydrostatic equilibrium and
geostrophic balance, we will introduce the geostrophic perturbation equations using
small—oscillation approximation to determine the mam pattern of perturbations. The wave
soluticns are more geostrophic than Rossby waves, and so called particularly as the
geostrophic waves. However, as the long—term balances of heat, momentum and mass are
dominated by the primitive equations other than perturbation equations alone, these balances
in the geostrophic waves will be investigated with the primitive equations.

In the atmosphere, thermal and mechanic forcings of topography are combined together
and complementary Lo each other, so that contribution of topography cannot be considered
simply as the sum of the effects caused by different forcings. But for convenience, the two
forcings will be discussed separately. The momentum and leat balances in stationary
geostrophic waves under these forcings will be considered using primitive equations in Part
and 11, respectively. The results of Part [ show that for maintenance of momentum balance in
the atmosphere, zonally asymmetric variation of zonal momentum produced by zenal
asymmetries of orographic forcing must be counteracted by the asymmetric generations of
zonal acceleration in the atmosphere. The stationary waves in the scales comparable with the
topography may produce the required asymmetric generation of zonal momentum. As the
asymmetries of momentum generation depend on the phases of stationary waves, the phase
distribution of orographic stationary waves may be determined by distribution of orographic
forcing.

II. SMALL-OSCILLATION APPROXIMATION

One of the most essential properties of large—scale circulation at middle and high lati-
tudes is geostrophic balance. In view of this, we may simplify the primitive equations for the
study of geostrophic perturbations using small—oscillation approximation. This approxima-
tion will be proposed by examining firstly the geostrophic balance in classical Rossby waves.

Usually, the simplified momentum equations of Rossby waves in isobaric coordinates are
written as:

ou' | O . &aﬁf’!l
5_i' +u7a; —fv= ! I
v | . Oy
5_r+u3x +fu' = —@y . (2)

With the usual assumption of no horizontal divergence, they are combined to be the conserva-
tion relationship of vertical vorticity.
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It may be proved that the zonally averaged meridional fluxes of heat and zonal momentum
depend on meridional wavenumber, so we use the two dimensional perturbation form of the
streamfunction:

Y = Asin(kx +my —kct} , 3)
where, ¢ denotes zonal phase speed:
- B
c=u— . 4
tmt @

Consequently, we gain

= —%‘f = — Amcos{tkx + my — kct) ,
v =%'£ = Akcos(kx + my —kct) .

Inseriing them into (1) and (2) yields

@', = A'sinfkx + my — ket +5) &)
with
g L ') + o
k+m® ’
2 2
Cosy = 7= {(k -:T) T 2
\ff ke+m’yY +8°m
fm

siny =
J}z(kz +mz)z +£2m2
Comparing (3) with (5) finds that the geopotential perturbation is out of phase of the

streamlines by y. This phase departure is produced by meridional variation in Coriolis

parameter f.
If we set |m| = 6|kl where » is a positive constant, the meridional variation in y may
be shown clearly by

_ _betang
ak(1+5%) ’

in which, @ measures the radius of the earth and ¢ signifies latitude. The distance of phase
departure between geopotential field and streamfunction is then calculated from

D=gaycosp/ N,

where N = akcose indicates nondimensional zonal wavenumber. The phase departure is
maximized when b = 1 in the same waves. Fig.1 shows the dependence of phase departure on
the magnitude of & It may be proved that the phase departure exists also for the
Rossby—Haurwitz waves, represented in the form of

¥ = Acosmysintkx — kct) ,

but in the meridional direction.
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Fig.1. Phase departures between geopotential and streamfunction in discussed Rossby waves
at 30° and 40°of latitude, represented respectively by solid and dashed lines. The numbers on
lines indicate nondimensional zonal wavenomber.

Fig.2. Smali—oscillation approximation.

For the planetary Rossby waves on S—plane of which meridional wavelength iz generally
greater than zonal one, 2 good geastraphic balance requires that b« 1 or m«ik. It implies
that horizontal tili of the geostrophic waves is small, which is consistent with the
observations. So, the zona! perturbation velocity #' in large scale waves is much less than
meridional perturbation velocity v'.

To support this argument, we consider a sireamline depicted in Fig.2, of which,
amplitude is rejatively small compared with zonal wavelength. Provided that air speed V, s
almost the same along the streamline, we have

Ve = P SINP0,
While, the maximum deviation of & is
Ay, =V, (1--cospy,) .
Supposing ¥’ = Aug,, /2, namely,
y S

W= V,sinl% s

we obtain
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When y=30°, it gives #',,, ®0.13¥ .. So «' is about one order less than v'. This result
will be utilized as the small—oscillation approximation to produce the perturbation equations
in next section, The waves described by these equations are therefore more geostrophic than
Rossby waves.

[11. GEOSTROPHIC PERTURBATION EQUATIONS

In the spherical coordinates with pressure instead of potential height as vertical
coordinate, primitive equations for hydrostatic circulation in the atrnosphere may be given by

du o Ou g _ %o
o +ua +w‘a}J ara}- tang — fv = Ee +F,., (%)
dv O By by w _e,
o +Max +va— +w@-+ tanga+fu 3y +F,, ¥
dg,
' —a, 8
Ou Iy  dw v _
7 +6y +6p atanqo—() , 9
du , dx |, du __R
Yo Yy 70T 0 o
Pa=RT. (n
Here
a &0 (]OOO)”C
=22, 8=T ,
T T3 P

and H measures the rate of diabatic heating. The other symbols in these equations have their
usual meanings.

Following the perturbation method, each of the field variables is divided into two por-
lions, a mean state portion (which is independent of time and longitude) denoted by an
overbar, and a perturbation portion (which is the local deviation from the mean) denoted by a
prime, namely,
=u+u, v=r+v, w=w+ao,

z+e, 0=0+¢, T=T+T.

Usually, magnitudes of the mean states are assumed to be at least one order greater than
those of perturbations. But at middle and high latitudes, mean meridional and vertical veloci-
ties are generally much less than perturbation compenents. For brevity, the mean vertical ve-
locity will be ignored in this study.

1t is assumed commonly that the mean portions satisfy the mean state equations:

f'_+—+ tamp 0, (12)
%,
dp -

and
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pE=R7_".

{12).is the geostrophic relationship for mean zonal flow on a sphere. If we use the
small—oscillation approximation described previously, the perturbation of zonal momentum
may be represented by the geostrophic perturbation relationship

. %
v, =5_x] i (13
While, the other perturbation equations read
dy B ,_ %,
7 g H' =~k (14)
a ’
;Lp' —— (15)
a _a’
%+u£—+ayv’—o',m’=0, (16)
aul a ' aw.’ v.‘
E;-’—%-Fﬁ_p__;mq):o" {17
pd=RT , (13
where
Yooy P dop

and v includes ageostrophic component, that is, ¥’ =v', +v',. In deriving these equations,
we have supposed that the terms of friction and diabatic heating are much smalier than the
others in the same equations, so that they may be not involved to determine the main pattern
of perturbations. But, these forcings have great effects on the long—term averaged balances of
heat and momentum. So they must be considered when we discuss the stationary wave distri-
butions in terms of the balances.

1¥. GEOSTROPHIC WAVES

Without consideration of wertical variations in wave amplitudes, geopotential
perturbation may be provided in the general form

QJ‘] =i¢(y)ef(vi—kx+my+lp) , (19)

Inserting it into (13} yields
s

_k
*7f

" mei(rr—kx+my+lp)

Moreover, the ageostrophic component is parameterized for simplicity by ¥', = v/, . Hence,
(14)<16) give

F = ﬂmef("l—kx*m}"”ﬂ}

u k]
f
a.f=[®e!(lt—kx+my+lp) ,
w’=f(l—;ékay—%Mr)q:e“"‘*my”ﬂ. =ik~ % - (20)

Subsequently, applying these solutions for (17) shows
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2
5o p+ L
{1+ o), SO +£5)
inwhich
8 f g, m Q
2 z
= =2>=cosyp .
T poycose
While, the meridional variation in geopotential amplitude shows
dd
dy =MD .
It is caused by f—effect and earth’s sphericity, which will be discussed further in another

study.
Generally in planetary perturbations, there is 5« 1. 8o, we have approximately

2 2 2
UJJ'—_(SLk+i&iﬂMﬁei("‘b‘+"’y+:ﬂ_ = — ,io-z m, k;=¢5f ?m
fo: o,k Ty o,

These results suggest that the ageostrophic component may be ignored except in the continui-
ty equations. Because divergence of atmosphere depends essentially on ag¢ostrophic motions.
In general, the horizontal tilt of planetary waves is eastward and poleward, while the vertical
phase slope is westward and upward. In these waves, thereis § > 0.
The zonal phase speed of geosirophic waves may be obtained from {20), showing
2
ol ().

-
K+ k3 af

It is different from the phase speed of the classical Rossby waves given by (4), since it includes
the effect of earth’s sphericity. This effect is greater than f—effect at high latitudes, so cannot
be ignored there, The phase speed of Rossby waves increases at higher latitude. This,
however, is not consistent with observations. Thus, effect of earth’s sphericity may be of sig-
nificance for propagation of the large scale waves.

In a mean westerly flow, the zonal phase speed may be equal to or less than zero, if wave-
length equals or exceeds the stationary wavelength

2n

’=\/:§7(1+;§;—2)*k§-

together with the conditions ¥ >0 and

L

Somti
g+ L
af
When there are mean westerlies or baroclinity is sufficiently small in the upper atmosphere,

stationary waves will not exist. The absence of stationary waves therein may be explained as
well without using the concept of trap of vertical wave propagation (Charney and Drazin,

0’;?5
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1961).
¥. ZONAL MOMENTUM BALANCE IN STATIONARY GEOSTROPHIC WAVES

The small terms neglected in derivation of geostrophic perturbation equations have little
contribution to the main wave patterns. However, they may be of great importance for heat
and momentum balances over a long period. Thus, long—term zonal momentum balance in
stationary geostrophic waves must be discussed with the primitive equation of zonal momen-
tum. '

The primitive equation (6) minus {13) produces the remainder equation of zonal momen-
tum:

_ O M du du oy -
0= Frlaly vay 6p+atzm-:;a+f(v+v,,)+F,{ ; 20
Unlike the study of Charney and Eliassen, the external forcing is incorporated hers in the re-
mainder equation. So, this forcing may be considered in its right order and wiil not be ampli-
fied.
The phase plane of stationary waves is, now, denoted by

¥,=—kxt+tmy+ip.

Substituting the stationary wave solutions into (21) yields

DU+ A,cos¥, + A,sin®, + Bsin2¥, + F, =0 , (22)
in which,
_ (52 I 3@2 2 — —
DU=--f—';'i—z—(ﬁ+fz—)+(m+—‘;— —-gi) 7
fol (& +k3) a’p a’p’ ¥
represents zonal symmetric acceleration, while
1 g, du 19%
PR AR 1 Yo
oA fo.p [

2
=5t g 23)

The small terms connected with mean meridional flow in the expressions of 4, and A,
have been neglected. Furthermore, with the relationship of thermal wind

P _ %
p f
they are replaced, respectively, by
T P 1) ko 4
! a’p f‘z a, Sy

and

Tt
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d 7 (ﬁ+ﬁ—)) kmd . 25

1( —_
A, == —u+
s K +kl T a8

If we use the zonal average

J— 1 x+L

O=1"" Cax
where L denotes a zonal wavelength, (22) may be replaced by

DU+F, + A cos?, + A,sin'¥, + Bsin2¥, + F, =0 .

Here, ', indicates deviation from the zonal mean friction fx. Obviously, this relationship
may be separated into

DU+F, =0 26)
and

A,cos¥, + A,sin¥, + Bsin2¥, + F/_ =0 . 27

Equation (26) is the balance relationship of zonally averaged zonal momeptum, which gives

the mean meridional circulation

& a km* (B +;%)m= —fol (k* +k7)F,

i{_—_ —_
u . _%u
s + i+ - 3)

or, approximately,
&a km® (B + ﬁ—zﬁ)q:’ —fol (k" +ET)F,
q

’ Lok’ +i7)

It depends greatly on ageostrophic motions. Usually, zonal mean flux of absolute angle mo-~
mentum is poleward at middle latitudes of the Northern Hemisphere (Newell et al., 1972), so
the troughs of large scale waves tilt in the northeast-southwest direction (Starr, 1947) or
km > 0. For these waves, the first term on the right hand side is negative. Additionally, the
zonal mean friction is opposite to the direction of mean zonal flow. Thus, the two terms pos-
sess opposite signs in mean westerlies. If frictional force is sufficiently large, mean meridional
flow will be along the direction of meridional pressure force. Whereas at high levels, it may be
in reversed direction. Therefore, from the point of zonal momentum balance, mean
meridional circulation at middle latitudes must be poleward at lower levels but equatorward
at high levels to form the Ferrel cells.

Moreover, (27) shows that the stationary waves may produce zonal asymmetry of zonal
acceleration. This asymmetric momentum generation must be counteracted by the opposite
contribution resulting from zonally asymmetric orographic forcing, when momentum balance
is established. As the asymmetric generation of zonal momentum has a specific phase rela-
tionship in stationary waves, phases of the stationary waves may be determined in terms of
asymmetric topography. This will be discussed in later sections.
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VI. LINEAR AND NONLINEAR RESPONSES TO OROGRAPHIC FORCING

Rearranging (27) gives
Acos(¥, —7,) + BeosQ¥, +1m)= — F', , (28)
where
A=JAl+Al
and
A 1 . A 2
cosyy =~ . siny, =—- . (29)

The first term cn the left hand side of (28) comes from the linear terms in (21), so it will be re-
ferred to as the linear response. While, the other term represents nonlinear response, which
results from the nonlinear terms.

Generally, for a continuous distribution of ', , more harmonic components of linear
and nonlinear responses with different wave numbers are required, so that 7, may be ex-
panded by them. As we are concentrated on the principal mechanism of maintenance of sta-
tionary waves here, we will consider only the idealized 7, represented approximately by a
single harmonic function:

F, =Gcos(nx +1,) , (n>0)
where, , is a constant. For this idealized forcing, the linear and nonlinear responses may be
discussed simply with (28).

To find the phase relationships of linear and nonlinear respanses only, we may separate

(28) into
cos(¥, —7,)= —cos(nx +1,)
and

cos(2¥, +%7:) = —cos(nx +n,) .

Thus, the linear response is in the phase of
Y, =t(nx—n)+y +=n (30)

and so has the same zonal wavelength as that of external forcing. While, the phase of
nonlinear response shows
1 1
= 4= 2
¥, _2(nx+r;f)+4n .

1ts zonal wavelength is twice as long as that of the forcing.
VIL. OROGRAPHIC STATIONARY WAVES

We find, after scale analyses, that the linear response in (28) is greater in order than the

nonlinear response. If only the linear response is considered, (28) may be rewritten as:
Acos¥, =y )& ~F, .
It tells that the amplitude of stationary geopotential perturbation associated with linear re-
sponse is proportional to the intensity of orographic forcing, and the phase is expressed by
. —<Dsin(nx+nf—v]] >
T L singax + 1, +1,) (k<0)

derived from (30) and (19}.

In other stodies, distributions of stationary waves were used to be determined by choos-




No.2 Yong. L. McHall 221

ing specific values for the included parameters. So the realistic picture depended crucially on
the choice and could be distorted greatly if using different values. In the present study the
phases are discussed in a general way, so that the differences will not exceed =/ 2.

We will discuss, in the following, only the orographic stationary waves at middle and
high latitudes of the Northern Hemisphere. The same physical mechanism and mathematical
method may also be used for the study in the Southern Hemisphere. It has been noted that at
middle latitudes where zonal mean flux of angular momentum is poleward, we have km > 0.
In this study, we consider only the case of k£ > 0. It can be verified generally that the identical
distributions may be obtained also by assuming & <0.

From the relationships of linear response above, we see that at middle latitudes, especial-
Ly on the polar side of westerly jet, there are cosy, >0 and siny, <0, andso3n /2 < y,
< 2. Moreover, in mean westerlies, 7, <0 on the windward sides of mountains and F*
>0 on the lee sides. Thus in zonal mementum balance, the induced stationary geopotential
perturbations associated with the linear response to the idealized orographic forcing at middle
and high latitudes may be displayed respectively in Fig.3.

It is shown that troughs of orographic stationary waves are located to the east of moun-
tain tops, whilé ridges to the west. This phase relationship may be proved by comparing with
Fig.4, which gives the longitude—height cross section of stationary geopotential height, de-
rived from |l winters and 12 summers of NMC operational analyses. In the whole
troposphere, two major troughs at middle latitude are located respectively over the east coast
of North America and Asia, and two major ridges are off the west coasts of North America
and North Africa. The ridge and trough corresponding to the Tibetan Plateau are more in-
tense and intensive than the other major systems associated with Rocky Mountains.

In the lower troposphere, as orographic effect is enhanced, the high over North Africa is
split into two centres corresponding to the two major highlands below, respectively. Thus, the
stationary waves are identified with wave 3 as shown by the climatological mean 500 hPa
height field in Fig.5. Since the surface between these two separaied ridges is covered by land,
the zonal contrast of 7 is relatively weak, so that the trough over is shallow.

Fig.3. The stationary geopotential perturbations associated with linear response to the idealized
zonal asymmetry of orographic forcing (dotted line) at middle latitudes (y, = 1.75x, solid line) and
high latitudes {y, =0.25z, dashed line), respectively. The simplified topography is illustrated on the
bottom.
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Fig.5. Climatological mean 500 hPa height ficld for January. Contour interval 60 m; the 5100,
5400 and 5700 m contours are thickened. The outer latitude circle is 20°N. (After Wallace, 1983).
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Fig.6. Northern Hemisphere climatological mean distobutions of stationary wave geopotential
height at the 200 hPa level. Contour interval 60m; the zero contour is Lhick:ﬁ:d; posilive contours
are solid and negative ones are dashed. {a) Janvary and (b) July {After Wallace, 1983).

At high latitudes of the Northern Hemisphere while, mean eddy flux of westerly momen-
tum is generally equatorward from winter through summer (Newell et al., 1972) in the upper
troposphere, so km < 0. The stationary geopotential perturbation at high latitudes may be
represented by the dashed line in Fig.3, of which y, =0.25z. The troughs and ridges are cen-
tred respectively on the west and east sides of mountain tops. Referring to the climatological
distributions of stationary geopotential height at 200 hPa level shown in Fig.6, we see appar-
ently the effect of Greenland Plateau, particularly during winter when the equalorward mo-
mentum flux is strong. The low in the downstream of Rocky Mountains extends to the west
side of Greenland, while the high in the upstream of the Tibetan Plateau stretches to the other
side. The similar effect is also evident over the Cherskogo Mountains in eastern Siberia.

VIII. CONCLUSIVE REMARKS

The present investigation of orographic stationary waves is different from the study of
Charney and Eliassen at least in four significant aspects. Firstly, the frictional force was in-
cluded in their perturbation equations. so it was amplified artificially for obtained realistic re-
sult (Held, 1983). Secondly. distnibutions of stationary waves are discussed in our study ac-
cording to the asymmetry ol vrographic forcing which, however, made no contribution to
their stationary waves. Thirdly, we find that the orographic stationary waves are required by
the long—term momentum balance manifested by primitive equations, which was not consid-
ered in their model. Finally, distributions of orographic waves in our study depend not only
on orographic forcing, but also on mean circulations and angular momentum flux.

It is postulated that the orographically forced stationary waves may be well simulated by
barotropic models (Held, 1983). We have found that the orographic stationary waves are re-
lated mostly to linear response, which is much larger than nonlinear response. Learned from
(23){25) and (29), the zonal differences in phases of orographic staticnary waves do not ex-
ceed n / 2 unless the baroclinity grows to a great extent. For mean zonal flow is strong and
mean meridional temperature gradient is relatively small in the upper troposphere, we may

[N —
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expect that simulation with a barotropic model may gain better results for upper stationary
waves.

If stationary waves in the atmosphere are forced mainly by the orographic forcing, their
distributions will be independent of time, This is nearly true for the observed stationary waves
in the upper troposphere of both hemispheres, especially at middle and high latitudes. Alsa,
since the linear orographic effect is generally greater than the nonlinear one, stationary waves
in these regions simulated by linear models may bear a good resemblance to the observations
(e.g., Lin, 1982 and Jacqmin and Lindzen, 1985).

Finally, as stationary waves depend not only on topography but also on mean circulation
and momentum transport, producing correct mean circulation fields and similar momentum
fluxes in 2 model has the same importance as introducing realistic forcing fields for simulation
of observed stationary waves. Thus, it is necessary to be prudent to draw any general conclu-
sion with the results obtained from the experiments in a limited channel.

1 wish to thank K. J. Weston, C. N. Duncan and R. 8. Harwood for their helpful comments and encouragerents.
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