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ABSTRACT

In this paper, an atiempt is made to study some interesting results of the coupled nonlinear equations in the at-
mosphere. By introducing a phase angle function Z, it is shown that the atmospheric equations in the presence of
specific forcing exhibit the exact and explicit solitary wave solutions under certain conditions.

I. INTRODUCTION

A spectacular progress has been made by recent studies on nonlinear equations des-
cribing the atmospheric waves. It is well-known by now that in the stmosphere, there exist
various types of waves which are classified (Panchev, 1985) depending on the nature of the
boundary conditions. One class of waves of physical interest is the Rossby wave that ordinari-
ly occurs due to the variation of the Coriolis parameter with latitude. Although it is not al-
ways possible to express the solutions of such equations in closed forms, it has been found
that by employing suitable boundary conditions. The solutions may be expressible in terms of
elliptic functions. As a result, useful insight may be gained into the nature and behavior of the
solutions and in sotne cases by passing over to the solitary wave limit. It may be remarked
that solitary wave disturbances are now found to be implicated as the primary causal factor in
a significant number of wind—shear related aircraft accidents (Christie and Muirhead, 1983).

It has been observed that the usual techniques which reduce a typical nenlinear equation
to a convenient integrable form are applicable (Huang & Zhang, 1988; Guha—Roy, 1990) to
atmospheric weather equations. Indeed, in this way periodic and solitary waves have been ob-
tained which are nondispersive in nature, In this communication, we wish to pursue the sub-
ject of nonlinear waves in the atmospheric setting and show the, other variants of solutions
which could not arrive earlier in a similar context.

. MATHEMATICAL FORMALISM

We start our discussion by considering the nonlinear coupled equations in a barotropic
nondivergent armosphere in the absence of specific forcing in the following form (Huang &
Zhang, 1987).

u tuu, —fr=—@,+G, , (12)
v, tuv, tfu=—¢,+G , (I1b)
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u, +v, =0, (lc)

where (#,v) is the fluid wvelocity at (x,), f the Coriclis parameter and
G (= —vu,), G,(= —vv,) denote the advection effects of v.

Now if one assumes that the latitude variation of the Coriolis parameter is given by the
linear approximation

f=rfy+By, B=const 2

then in the presence of specific forcing 2, Eq. (1) reduces (Huang & Zhang, 1987) to
(é’li-uax+ux)(vx"uy)+ﬁv=Q=;‘% (3a)
u, +v, =0, (3b)

where g and y are parameters. Obviously there will be no specific forcing for v = Q.
The above set of equations {3a, b) may be further reduced by using the following trans-
formations:

u=u+w), v=wl), E=kx+iy—wt, 4)

the symbols have their usual meanings.
Thus, substitution of (4) into (3} and elimination of » results in

Av
y+e ’ ©)

GF v =tv—

whcrev=‘%(v—zﬂ, (,’=—kL v=

@
102+ 7y k-

= ku - 4
A W+ and ¥>0, k>0, 1<0, >0, u>0, () p7
Integrating (5) w. r. 1. £, we get,
[+ =207+ — o +c ®

where ¢ is an integration constant and 8] = {(u / )} > 0.
It is remarking (Huang & Zhang, 1987) in this context that crepresents the pseudo—en-
ergy satisfying the inequality

0<e<is—»1. ™
Let us transform Eq. (6) by setting,
p= A—ay)—
(W+a) '
where A(> () is a constant. Eq. (6) then becomes,
W2 =AW +2)® + B +a) +C(W+aY +DW+a) . (8

In (8), the parameters 4, B, C and D stand for

1.1 28
A=FIGE +o-ar) B=2E
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C=_g6_-:_211 D:zg‘
A 32

For convenience, one can express (8) as
4
wr=Ya,Ww ()
i=0

where a';s are obvicusly a combination of the constants.

It is interesting to note (Guha—Roy, 1988) that for 6 > [-lgy+f—2—], by applying the
7
Kano and Nakayama (1981) method, one can find the solutions of Eq.9) in terms of
Weierstrass function as,
ap(l+6; ga.23)
W= . 1G
[ +5pG+0 g,,) 1o

whereg, and g; are real parameters such that

£ =273 > 007 =4p’ ~gyp—g, ,

and a and b being constants, are determined in terms of 2’ 5.
The exact bounded periodic solution of (9) is then given by

afe; + (e —e,)snztdel —e, £+ 8" }]
1+ ble, + (e, —e,)s;ﬁ{Je, —e, E+8' }] '

It may be noted that the modulus of the Jacobian function “sn” is

wi&)= 6" =const . (n

€y — 25
m=——
€L T €,

ande,, e, ande, arereal rootsof
4’ —g1z—g; =0,

such that e, >e, >e,. [Itis needless to mention that the solitary wave is a wave having in-

finite periods and this happens when m is unity (Kano & Nakayama, 1981). As a result, in

the solitary wave limit ¢, =e,. Thus the solitary wave solution is obtained as
ale, — (e, _‘es)ml@ ¢, —e3¢{16" )]

L+ ble, —(e, —e;)ech’(We, —ey E+8° )

W) = (12)

sincee, +e, te, =0,
Next we consider three possible cases that exhibit solitary wave solutions too. In order to
see this, we reset (9) in the form

W*=Yaw (13)

by adjusting the constants A, B, C, D and .

Now for § < [:,l;'y + C—c;], one can write (13) as
Y
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W =a,WH{W+ A, YW+ 5y) (14)

subject to the conditions:
a,, 4,, A, <0and i, <4, .
It may be noted that this is possible provided

A=2 = =25 {15)

Let us write Eq. (14) as

4 _ 4 ] [ 1 _ 1 ]
dw Tl Lwd - 2, (WA N — (7 +4)

W W
or,f ——-—M—=izll\f|ab|(£+fo]+.[ 4l

wy — (W +4,) W+ AN — (W +4y)
=+ i,V |ag | (€ + &)+ GEFEE) ,

where
FO=Ww@+4i],
1 M@ —Gi + )
(lf +A2)”2 aresin| FE — "

GFRO) =

Therefore, we have
Wiy = 2T TsechTET] £ 2, VTag [+ £0) + GEFEN]] - (16)
On the other hand, if we write (13) for
> [%]v +:—c—2-], as
oY
W =g, WHW+ i) (WP + A, W +4,) (an

then by adopting the technique described here, a combined form solution can be obtained
(Guha—Roy, 1987), namely,
41,

JE—aa e ve T HQi, /2 -4,

W)=t (18)

where
FEO=WE©+4],
Y=, [£4Vag € +E&)+GFEE , and

142
L {P@Fu R0+ 0 oy
G(F(é))= _‘j?ln . F(é) + 1/2 1

T

with t=(3 —1,4i; +4,)>0, a¢, 4; >0 and 4, 1, <0 .

It is noteworthy that the possible form (17) will exist if
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Finally it is interesting to point out that when o = — (8 / 64), we can express (9) as
We=a, W +a, W +a, W, (19)

provided 1= 58 =T5— . .
Now if we write (19) as

W =a, W+ A X +A,) , 20)

then it is not difficult to find that Eq. (19) has a solution of the form

£= iﬁ:?m[(;y‘—;)(zx—nrwz + WRPN+K ,

where
P=MW'-NW +R, (21)
M=a,/2, N=—agd +4,)/2, R={agd,4,)/2

and X is integration constant.
Setting # = 2V 2R (¢ — K), we have from {21),

4R exp( £ 6) )
[{N+exp(i 9)}2 —4RM]

W= (22)

1t is thus observed that as £ tends to infinity, W> approaches to zero for either sign in
the exponent. As is shown in Ref. (Lakshmi, 1979} that W*® represents a well—behaved finite
energy, soliton solution whenever N > v4MR . The details may be found in lakshmi (1979)
‘s paper.

It may be remarked that special solutions of (13) are of different kinds than that obtained
from (9}. It is instructive 1o point out that the sofution (16} may not be evaluated, owing to
the causal factor 4, from the solution of (9) by vanishing a, and a,. But the possibility of
constructing other solutions of {13) from the solution of (9) seems to be clear. We shall deal
this criteria together with its stability property in a subsequent paper.

III. CONCLUDING DISCUSSION

Summing up, we have reported a number of solitary wave solutions of the atmospheric
equations. It is worthwhile to note that soliton like solution also exists for certain restriction
of the parameters. To make a conclusion, we may say that these solutions may be useful in
understanding the fundamental properties of the nonlinear waves in the atmosphere. It may
be further remarked taht there will be no solitary wave solution in the absence of specific forc-
ing. Finally, it is needless to mention thal similar analysis can be made for k > 0, 7> 0.

Thanks are due to Dr. B. Bagchi for stimulating discussion. This work is supported by the U. G. C. (FIP) and C.
8. I. R., Govt. of India,
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