Vol9 No.2 Advances in Atmospheric Sciences May 1992

The Momentum Turbulent Counter—Gradient
Transport in Jet—like Flows

V. N. Lykossov
Institute of Numerical Mathematics, USSR Academy of Seiences. Moscow, USSR
Beceived May 22, 1991 revised September 7, 1991

L. INTRODUCTION

It is very well known from the observations that some atmospheric motions are
accompanied by jets in the boundary layer, for example, breezes and circulations in the moun-
tain valleys (Gutman, 1969); nocturnal increasing of wind (Byzova et al., 1989); cross—equa-
torial flow during the summer Indian monsoon (Das, 1986) and others. One of the important
questions concerning a mathematical modelling of such motions is the problem cof the turbu-
lent closure of the equations set which describes the jet dynamics. It is still popular to use for
the momentum turbulent flow (u’w"} a closure, based within the framework of K-theory on
the Boussinesq hypothesis

—— Ju
P = _ phi
u'w K@z , m

where z is the vertically directed upwards coordinale; », w~horizontal and vertical compo-
nents of wind velocity; K—eddy exchange coefficient {(due to physical meaning positive one);
averages are denoted by overbars, and fluctuating quantities by primes. But of late years. it
was shown that relationship (1) has some essential shortcomings, which restrict the usage of
this formula.

For example, the very interesting case of jet has been observed in the fair—weather trade
wind boundary layer io the northeast of Puerto Rico in December 1972 (Pennef and LeMone,
1974; their Fig.4). The maximum of wind velocity was placed near the surface; the negative
wind shear area has occupied upper two—thirds of the boundary layer. But at the same time it
was found that the direction of momentum transport over the enlire boundary layer was to-
ward the surface. It follows, therefore, that in the case of negative wind shear momentum
transport is counter—gradient.

Results of the laboratory modelling of the turbulence within a baroclinic mixed layer
above a sloping surface, which are presented in the paper of Deardorff and Willis (1987),
show, that jet-like flow near the tank bottom is compensated by return flow in the upper part
of the boundary layer (Fig.4 of the considered paper). The vertical profile of flux u'w’, given
in Fig.5 of that paper, does not allow to draw any information about counter—gradient diffu-
sion of momentum at the height of the near—bottom velocity maximum, but it bears an evi-
dence of such diffusion in the upper part of the mixed layer (see also Fig.6 of the considered
paper, which shows terms of the turbulent kinetic energy balance: shear production is nega-
tive above the level of the return flow velocity maximum). It is strange that Deardorff and
Willis have not discussed this feature of experimental data. Moreover, their conclusion that
momentumm flux could be expressed in form (1) is in contradiction with their Fig.6, because in
this case the shear production must be non—negative everywhere.
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In the Narasimha’s survey (1984) of the turbulence in simple flows another example of
the laboratory simulated wall—jet is given. Fig.5d of his review shows that in such flow the
counter—gradient transport of momentum was cbserved just below velocity maximum height.
The same features of the wall boundary laver with jet—like flows were discussed in the work of
Wood and Bradshaw, 1984 (see Figs.2 and 6 of their paper).

Finally, the numerical simulation of the atmsopheric boundary layer vertical structure
over the curved underlying surface in presence of horizontal heat advection (Speranskiy et al.,
1974) has shown that even if formation of nocturnal jet was caused by the coupled effect of
baroclinicity and topography, iniensity of jet depended very much on the character of the
momentum turbulent transport mechanism.

Let us consider this in more detail. We can wrile the equation for the time () change of
the averaged velocity u  as follows

ou
at
where dots denote terms describing the input of other physical processes into jet dynamics.
Let us assume for the definition that ¥ > 0. Introducing the relation (1) into formula (2) we

get

- _ E% (17,—1?) S {2)

du _éKéu & u
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At the jet axis we have g—g =0, % <0 and therefore the parameterization of the momen-
) iz
tum turbulent flux in Boussinesq form (1) leads us to the systematic decay of the (simulated)
velocily maximum.

In the author’s previous paper (Lykossov, 1990) on the basis of the second moments
equations it was found in (he quasi—stationary approximation that the Boussinesq hypothesis
can be generalized as follows

— an

u.f“,lz — é% —}ru] . (4)
where y, is so—called counter—gradient, which in commom case depends on the wind shear,
Bruni—Vaisala’s frequency, turbulent frequency (relaxation time) and some combinalion of
third—order convariances. Introducing ihe expression (4) into formula {2) we get following re-
lationship ,

2K ou &u a[ ]

FrE P P e e R %)
from which one can see that in some cases the dissipative effect of the velocity profile curva-
ture al the jet axis can be compensated by non—local (counter—gradient) turbulent transprot
of the momentum. In the above mentioned paper of Speranskiy et al. (1974) it was taken thal
7. = 0u, / 6z =const, where u, is geostrophic wind velocity. Considered in that paper the
situation was characterized by y, >0 and 8K 7@z <0 in the jet area. These conditions gave
a possibility to “suppori” jet in the model calculations.

Modern high—order—closure models, eddy—resolvable models and calculations of the
turbulent statistics, based on the direct measurements of meteorological parameters in the
atmospheric boundary layer, allow, in principle, to estimate conditions, when momemtum
transport under consideration in low—level jets can take place. But such models require for
their realization large computer resources. Higher order statistics calculations are demanding
a fine accuracy of the direct measurements. In connection with this, simplified models re-
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flecting main features of the problem under consideration, are useful.
II. PROBLEM FORMULATION

In the present work we neglect effects of thermal stratification, assume that vertical pro-
files of horizontal averaged wind velocity (&), vertical velocity dispersion (wfz) and turbu-
lent frequency (w=¢'"? /1, wheree is the turbulent kinetic energy, | turbulence length) are
known. We consider the problem in the stationary and horizontally homogeneous approxi-
mation. Then equations for the second and third covariances can be extracted from third—or-
der—closure model {Andre, 1976; Moeng and Randall, 1984; Kurbazkiy, 1988) and are as fol-
lows

4 Wy +w '”‘"‘ +C,Coanw =0, ©)
_d W'W) +i'w ’; W+ (1 - c,,)w’*d“ +C, Comu'w™® =0, (7
Wil (w’2)+C Coam”™ =0 . (8)

In Eqgs.(6)—(R) the variable w’w"t stands for the vertical turbulent diffusion of the momentum

flux; function w*  describes the vertical flux of the dispersion wt: parameters C,,C,,Cy

and C|; are “universal” constants.

These constants have a following meaning: C, is the proportionality coefficient in the
well known Kolmogorofl's (1942) relationship between the dissipation rate, turbulent kinetic
energy and turbulence length; C, is parameter in Rotta (1951) formula, giving proportionality
between pressure gradient / velocity covariance and momentum; C, and C, are link
coefficients between 3rd order covariance pressure gradient / energy and momentum flux
components and gradient of the averaged velocity in the “relaxation approximation™ hypoth-
esis (Kurbazkiy, 1988; Moeng and Randall, 1984). Besides relationships mentioned according
to Milliontschikov’s (1941) hypothesis of quasinormal approximation, which allows to ex-
press 4th order covariances through covariances of 2nd order, has been used in Egs.(7) and
(8).

In the momentum balance Eq.(6) the first term characterizes the turbulent trnasport of
momentum u'w”;  the second one describes the momentum generation due to interaction be-
tween mean flow and fluctuating flow; the last one is the result of Rotra (1951)
parameterization for the interactions between fluctuations of pressure and velocity. The fol-
lowing Eq.(7) is the balance equation for the “flux of momentum flux” and in this equation
first two terms, which are equivalent, due to Milliontschikov’s (1941) hypothesis, to the gra-
dient of the 4th order covariance #'w’> , describe the turbulent diffusion of the u'w” 2. The
third term of this equation consists of two parts, first of which characterizes the generation of
the covariance u'w’>  due to interaction between mean and fluctuating flow and second one
together with last term of Eq.(7) is result of * relaxation approximation” hypothesis
(Kurbazkiy, 1988; Moeng and Randall, 1984) application.

Similarly, in the Eq.(8), which is the balance of the vertical dispersion flux, first term des-
74

cribes its turbulent diffusion de

of the “relaxation approximation” relationship.
In the considered formulation Eq.(8) is an algebraic relationship. Therefore, we can for-
mulate only two boundary conditions, which we chose as follows:

and the second one is the consequence of the application
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ww =1, for z=0 ®

—+

u'w' 0 for z " (10)

where 7, is a known momentum flux value at the surface.
Equations set (6)—8) by simple transformations can be reduced to one ordinary
differential equation of 2nd order for v'w’

£ 2 e en o).
dz[ w'wh |+ pr'w' ] + aou'w’ = o - +ﬁ2dz wo (11)
where it is denoted:
v=ew"w?, u=(l/2)w_'a,iz(w’2) _ )
:x=(l/2)CfC4Cﬂ, B, =(01/2)C, Cq, ﬂ2=3(l—C”)C1C8. ' (12)

J[65] Using values of constants, given in the Moeng and Randall (1984) paper,
C, =007, C,=45 C,=80; C, =02,
we gel
a=0.09 f, =028 B,=4.29.
Il. QUALITATIVE ANALYSIS

Let us neglect for some time the first two terms in the left—hand side of Eq.(11). Then this
equation takes up the form of generalized Boussinesq hypothesis (4) with

- - da[ 4
L TR AN (13)

We can rewrite the expression for w'w’ in a slightly different way
ww' =1, tr, (14

where _
7 = -K{l+<1/2)ﬁzﬁ;‘w*'v*'[di(m+ 2 (|2} (15)
- ,_ St — [ }fl_i

R R K] () dztuv)’ i (16)

It is possible to see from the formulae (15) and (16}, that a component ¢, describes the gra-
dient diffusion of the momentum, and r,. the possible counter—gradient transport. This
possibility of the counter—gradient diffusion depends on interrelationships between 7, and
1., . The counter—gradient flux of the momentum takes place, if firstly, signs of r, and 7,
are different and, secondly, z,, is greater on absolute value than z,. Taking into account

the relation (12) and the turbulent frequency 0 definition, we have at the jet axis
7, =0
du
dz’
It is clear that the second formula in (17) is approximately also valid in some neighbourhood
of the wind velocity maximum level.
Measurements of the atmospheric wind in trade boundary layer near Puerto Rico

(Penne! and LeMone, 1974, Figs.4 and 5) show that practically in the whole mixed layer
A5/ dz* <0 and the variable w” is approximately constant below wind velocity

—(1/2)a‘1ﬁlus’21’/ ”’[dz(w )} an
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maximum level and it is decreasing along height above this lgvel. In lower one—~third of the
boundary layer du / dz 20, 7,920 and momentum flux js “classically” toward the surface.
In the upper part of the mixed layer du/dz <0, but also 1, 20 and, therefore,
counter—gradient flux of momentum (also toward the surface) is possible if absolute value of
¥, is grealer than absolute valve of du/ dz. In the considered case this situation takes
place, of course, at the jet axis and in some neighbourhood below. Due to second relation-
ships (17) t,, is proportional to cube of turbulence length. It means that large eddies play 2
very important role in the formulation of the momentum counter—gradient transport and in
this particular case it is supported by observed data (Pennel and LeMone, 1974, Fig.7).

in the study of Deardorff and Willis (1987) measurements were not conducted in a thin
layer below level of near—the—surface velocity maximum. Data for return flow (Fig.5 of
Deardorfl and Willis’ (1987) paper) show that counter—gradient diffusion of the momentum
in the upper part of mixed layer can be explained similar to the above considered case.

Unfortunately, in Narasimha’s (1984) publication the distsibution of w't is not given.
But in this case we can also try to use formulae (17) for the explanation of the momentum
counter—gradient diffusion, As one can see from Fig.5d, given in considered review, momen-
tum flux at the jet axis is positive and comparable in absolute values with surface stress 7.
Because the velocity profile has a negative curvature at the jet axis, one can see from (£7), that

in this case vertical velocity dispersion must increase along height [;—Z(F) > 0]. This con-

clusion is supported by laboratory modelling data presented in the paper of Wood and
Bradshaw, 1984 (Fig.4b of that paper). Becanise of ' profile continuity counter—gradient
transport must also take place in some neighbourhood below velocity maximumm level. The
size of this neighbourhood depends on parameters of the formulae (17), the most important of
which is obviously turbulence length.

I¥. NUMERICAL EXPERIMENTS

The solution of the full problem (Eq.(11) with boundary conditions {9), (10)) has been
obtained numerically. For this purpose the finite—difference grid on vertical coordinate z
with homogeneous step Az has been used. Eq.(11) has been approximated by finite-differ-
ence one and for the selution of which the factorization method (Marchuk, 1980) was used.
Two basic series of numerical experiments have been carried out, in both of which the flow ve-
locity profile was taken as an analytical function

B

Emau HJ expl:l H}' ] ’ ( )
where #,,, is wind velocity value at the jet axis, placed at height H, .

In the first series of experiments the profile of the vertical velocity dispersion W was
chosen as monotonous decreasing zgong height function

= =exp[—H—z*-] : 19

max

=

where #, is some vertical scale and w2, the maximum value of w™ . In the second series
of experiments the function w'?  was taken as the distribution, which has a maximum inside
the domain at height H, > H,.
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1:7‘!

i =(1/2){1 + exp[l—gz:—]} ‘ 20)
In both the series, numerical experimerits have been carried out for 3 different values of

the turbulence length: /=50, 100 and 200 m. It was assumed that ¢ =rw’> with constant
proportionality coefficient r. The height of calculation domain was chosen equal to 1000 m,
H, and H, were,in all experiments, taken equal to 200 m and 400 m respectively. The step
Az was assumed to be equal to 10 m. Other parameters were not changed either from exper-
iment to experiment and were chosen as follows

r=03/2) Upe =5m/s; wi, =02m’/s;

1,=—02m? /s . Q20

Let us consider some results of calculations. In Fig.1 vertical profiles of mementum flux
ww’, caleulaied in the experiments of series I for different values of the turbulence length
{f=50 m for Eap.L.1, /=100 m for Exp.1.2 and /=200 m for Exp.L.3) are given. The distribu-
tion of averaged velocity # is also shown in this figure by heavy solid line. From Fig.l one
can see that #'w” profiles show existence of counter—gradient area above jet axis (z = 200 m)
in all of three experiments and size of this area depends on the turbulence length value: in
Exp.L1 it is equal o 150 m, in Exp.1.2-350 m and in Exp.].3 momentum flux is towards the
surface in the whole boundary layer.

Estimation (17) shows in this case the cubic dependence of a'w at the wind velocity
maximum height (z. ) on value of lenght }: ~0.18, —1.41 and —11.3 m*/s’. In numerical
experiments an inclusion of the turbulent diffusion (with diffusion coefficient v) and turbulent
advection {(with velocity u) lead to an approximately linear dependence of T, on £—0.35,
—0.79 and —1.73 m’ / §°, respectively). On the whole, Fig.] reflects qualitatively the main fea-
tures of w'w’ distributions, found in the publications of Pennel and LeMone {1974) and
Deardorff and Wilkis (1987). It is also seen from Fig.l, that momentum profiles clearly ex-
pressed maxima in the layer, placed below the jet axis. The same feature of «'w’ can be seen
from Fig.6 of Pennel and LeMone’s (1974) paper.

Given in Fig.2 are profiles, obtained in the experiments of series [L. In these experiments
also there exists counter—gradient area; it is placed below the jet axis and its size depends, as
in the previous case, on scale I, varying from 60 m in Exp.IL1 to practically whole depth of
the layer, placed below the velocity maximum level. At the jet axis an estimation (17} gave fol-
lowing values of 7, : 0.10 m* /s’ in Exp.IL1, 0.78 m*/s* in Exp.JL2 and 6.26 m*/s’
in Exp.IL.3, but from Fig.2 one can see, that taking into account diffusion and advection we
obtained for t, : 0.11, 0.62 and 1.74 m* /s> respectively. In contradistinction to the pre-
vious case, results of these experiments showed the absence of the linear dependence of ,
on .. Finishing the discussion of Fig.2 we can say that this fipure reflects qualitatively the
character of the momentum turbulent transport, dencted in Narasimha’s survey (1984) and in
the paper of Wood and Bradshaw {1984).

In the previous section we stressed out the important role of the averaged velocily profile
curvature in the formation of the momentum counter—gradient diffusion. We have also
conducted the experiments, in which parameter f, was chosen to be 0, and therefore, curva-
ture effect of ¥ distribution was “switched off” in Eq.(11). Results of #'w’ calculations are
presented in Fig.3 (Exp.1.4-1.6 for the same range of parameter / (as in Fig.1) and in Fig.4
(Exp.11.4-11.6 respectively). The level of wind velocity maximum is denoted in these figures
by the arrow. From Fig.3 one can see that as in experiments of series I there is
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Fig.1. Vertical profiles of momemtum «'w’, com- Fig.2. Asin Fig.1 but for Exp.’s IL.1-1L.3. Distributjon
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Fig.3. Verlical profiles of momentum #'w”", computed Fig.4. Asin Fig.3 bt for Exp.’s [L4—11.6.
in Exp.'s L4—L6. Parameter 8, in Eq.(11) is equal Lo
0 .

some counter—gradient area, but its size is now less, than in Fig.1: from 80 m in Exp.1.4 to 250
m in Exp.1.6. Flux «'w’ is in this case less sensitive to the / variability than in previous ex-
periments 1.1-1.3.

A character of #'w’ transport below the jet axis has totally changed in the experiments
of series 11, when curvature term in Eq.(11) was “switched off”. The counter—gradient area ex-
ists, but its size is negligible. Moreover, in Exp.I1.4 this area is placed above the wind velocity
maximum level. Similar to the series [.4-1.6, dependence of ¥’w’ on! is much weaker than it
was found from Exp.II.1-11.3 results.
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In order to estimate the role of the turbulent advection with velocity ¢ (second term in
the left—hand side of Eq.{11)) additional experiments 1.7-1.9 and I1.7-11.9 have been carried
out. In these calculations function x4 was put 0 both in this term and in the last term of the
rigit—hand side of Eq.(11). Results of these experiments were compared with results of
Exp.1.4-1.6 and 11.4-11.6 respectively. An example of such comparison is prsented in Fig.5,
which shows vertical profiles of «'w’, calculated for /=50 m in Exp.L.4 (solid line} and 1.7
(dashed line). From Fig.5 one can see that the difference of profiles is small (the same is true
also for other experiments with different values of / parameter and alternate vertical distribu-
tion (20) of w). It is necessary o note that in second—order—closure models, using
Boussinesq hypothesis (1} for the calculation of covariance ’w’> on the basis of '’ gra-
dient, Eq.(6) takes form (11} with y =0,

Let us also note that in the above discussed calculations function ¢ was formally put 0,
but coefficient v was chosen to be varying along height in accordance with the given W

profile. In expesiments 1.10-1.12 it was supposed that w” = w.. . Calculated in Exp.L10

(!=50 m) »'w’ profile is also depicted in Fig.5 by the dashed—dotted line. It is seen from this
figure that there are some quantitative differences with case v X const, but distribution of w'w’
along height is qualitatively the same. The same picture is true for the other two Exp.’s L11
and [.12 (figure not shown).

We also conducted the series of experiments ITI.i—111:3, in which profile of w?  was
chosen in form (19), but wind velocity distribution was taken as linear function with gradient
i, / H. Results of calculations for three values of / parameter (50 m in Exp.lIL1, 100'm
in Exp.II1.2 and 200 m in Exp.I11.3) are presented in Fig.6. Similar to Figs. 1 and 2 the profile
of averaged velocity u is 2lso depicted in Fig.6 by the heavy solid line. 1t is seen from this fig-
ure, that although in this seties of experiments w™~ is varying along height (it means that
functions ¢ and v are also varying along height) counter—gradient diffusion of momentum
is absent.
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Winding up the discussion of conducted numerical experiments we can conclude, that a
coupled effect of the averaged velocity profile curvature 877/ 9z  and the vertical velocity

dispersion gradient % (w™) obviously is a main factor, influencing on possibility and char-
acter of the formation of the momentum counter—gradient diffusion in jet—like flows.
V. CONCLUSIONS

In this paper results of study of the momentum counter—gradient diffusion in jet—like
flows are presented. A simple stationary model based on the 3rd—order—closure scheme has
been used to show, that the existence of the momentum counter—gradient diffusion could be
explained by the coupled effect of the curvature of averaged wind velocity profile &5/ 8zt

and gradient of the vertical velocity dispersion diz(F ). Depending on sign of this gradient

counter—gradient area can form itself above or below the jet axis. The size of this area de-
pends very much on the turbulence length: the more is input of large—scale eddies, the wider is
area of the counter—gradient transport. Results of model caleulations are in good qualitative
agreement with observed atmospheric data (Pennel and LeMone, 1974) and laboratory
measurements (Deardorffl and Willis, 1987, Narasimha, 1984; Wood and Bradshaw, 1984).

Of course, one can say, thaat vertical scale (H, ) of w'® variability along coordinate z
is non arbitrary and must be connected with turbulence scale /. 1t is possible 1o show that
taking into account such connection we come to the same qualitative conclusions.

Indeed, let us consider an equation of balance for the vertical velocity dispersion (Andre,
1976; Moeng and Randall, 1984; Kurbazkiy, 1988)

%(;’—3)—(2/3)@4—1)(‘,12(»3+C,C4mw7=0 . 22

Taking into account Eq.{8) and notations (12), we can obtain the ordinary differential
equation of the 2nd order with respect 10 w2

dl d  — , :
E[LZ(F)] ~ @/ D’ =~/ Iupy P’ (23)

where fi; =2/ 3C, — 1}/ Cy (0.52 for C; =4.5). I {=const and ¢ =er:’7 with r =
c¢onst. we can obtain an analytical solution of (23), which has for r <, L' a form (19) of mo-
notonous decreasing along hieight function with H,  as follows:
_ -
T w1 - )

Ifr=3/2 and { takes consecutively values 50 m, 100 m and 200 m, then formula (24)
gives following values of scale #, : 435m, 870 m and 1740 m respectively. We have repeated
Exp.’s 1.1-1.3 with H, calculated from (24) and found ihat counter—gradient area existed
and placed above jet—axis, bul its size was varying much less: 120 m, 160 m and 240 m
respectively.

It seems advisable to use the semi—empirical theory developed by Lykossov (1990} for
ihe parameterization of Lthe momentum counter—gradient diffusion in the planetary boundary
layer models. It could be realized, for example, by taking inte account together with turbulent

{24)
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kinetic energy equation also equations of type (11) for the transport of both zonal and
meridional components of momentum. As first guess we can assume a similarity of w” and
turbulent energy ¢ profiles. A following step could be the use of w  balance equation. Such
generalization of semi—empirical theory of the planetary boundary layer does not essentially
complicate also its parameterization scheme in large—scal circulation models.

I gratefully acknowledge Prof. R. Narasimha. who has attracted my attention to the problem under considera-
tion, for the personal conversations and useful discussions. I am also indebted 1¢ Dr. Ph. Bougeault, Prof. ¥, P.
Dymnikov and Prof. M. Sankar—Rao for the useful comments. This research has been conducied under
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