Vol.9 No.3 Advances in Atmospheric Sciences August 1992

A Problem Related to Nonlinear Stability Criteria
for Multi—layer Quasi—geostrophic Flow®

Liu Yongming (XEA0)

Institute of Mathemadtics, Anhui University, Hefei 230039

Mu My (B &)

LASG., Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing | 00030
Received June 1, £931

ABSTRACT

The second avthor studied the nonlinear stability of W—layer quasi—geostrophic flow subject o perturbations of
parameters and initial data, and established the stability criteria for the flow in question, which involve finding out the
lowest eigenvalue of an clliptic boundary value problem.

In this paper when the domain is a periodic zonal channel, a formula of the lowest eigenvalue is established,

which is useful for Further studies and practical applications,
I INTRODUCTION

In 1965 and 1966, using the variational principle and a priori estimates, Amold
(1965.1966) presented a method in studying the nonlinear stability of planar ideal
incompressible flow, and obtained two criteria so—called Arnold’s first and second theorem.
The method has been applied, particularly in recent years, to geophysical fluid dynamics, and
fruitful results were obtained.

Generally speaking, the criteria parallel to Arnold’s first theorem are not difficult to find
for various fluid systems, since the corresponding second derivative of the functional near the
equilibrium (ibat is, stationary state} is sign definile. However, for the criteria parallel to
Arnold’s second theorem, in order to guarantee the second derivative of functional near the
equilibrium to be sign definite, it is usually necessary to find the lowest eigenvalue of an
elliptic boundary value problem, see MclIntyre and Shepherd (1987), Mu and Zeng (1989),
and Mu (1991).

The second author {1991) established the nonlinear stability criteria parallel to Arnold’s
second theorem for N-layer quasi—geostrophic flow. The criteria involve the lowest
eigenvalue of 2 boundary problem, and the calculation of this eigenvalue is the purpose of this
paper. This is not easy to tackle it in general, so we restrict the domain of the flow to be a pe-
riodic zonal channel usually considered in geophysical fluid dynamics, and obtain a formula
of the lowest eigenvalue. And a lower bound of this value is also given for practical applica-
tions.

(DSupported by National Natural Science Foundation of China and LASG, Institute of Atmospheric
Physics, Chinese Academy of Sciences.




338 Advances in Atmospheric Sciences Vol.9

1I. STATEMENT OF THE PROBLEM

Consider a stratified fluid of ¥ superimposed layers of constant densities p; < p, < ...
< py , the layers being stacked according to increasing density, such that the density of the
upper layer is p; . The motion obeys a system of coupled elliptic equations (¢f. Holm (1985,
p-32)).

%’ +JI@>) =0, 2.1
G=VP+ATG+ [, 2.2)

where V2 =& /8x* + 8 /8y’ isthe Laplacian, A isan N x N diagonal matrix
A =diag(x, ,...ay) , S, =2Uksing, ,

p=—— Lo k=1..N. 2.3)

Pr+1 "Pk)
T T p.
(" .

Q is the Earth’s angular velocity, @, #0 is the reference latitude, g is the gravitational
acceleration, p, =(p, + ...+ py)/ N is the mean density, D, is the mean thickness of the
k—th laver. T is a symmetric real tridiagonal matrix

[ —1 P 0
1 -2 1 0
T=(Ty)= R . 2.4)
O 1 -2 1
A 11

A letter with an upper bar indicates an N—dimensional column vector:
¥ =col(y; ), ©=col(w,), F=col{f,) , etc., where ¥, is the stream function of the
k—th layer, v, is the generalized vorticity of the k—th layer, and

fo=fo+Br. k=1..N—1,

d(x.p)
Fu =fo+ﬁy+f0Dx ,
N
_ 2cosp,
.B_ R 3

R is the Earth’s radius, d(x,») is the orography.

The domain D is bounded and multiply (or simply) connected with smooth boundary
E
ép=1Jop, ,
=0

where each 6D, is a simple closed curve, and éD, is the outer boundary.
The boundary conditions are

P
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a _ 4 (Y .
al, =0 dsz(an)ds‘q' i=0..7, 2.5

i,

where 0% / ds and & / dn are the tangeniial and normal derivative of the vector function
¥ along @D respectively, and s is the arclength along &D.

Now let F{x,y), wx,v) be a stationary vector solution of the unperturbed problem (2.1},
{2.2), (2.5), hence

Jg, @)y=0.
Then we suppose i, isa functionof w, , k=1....,N.

U =0y (), k=1..N,

where £, (&) is a continuously differentiable function of £, and

'g‘e[mj;inm*, maxw, ] .
D

Suppose
. Vi \_ =
mm( _Vco,‘ =Cy>0, K=1L.N,
max _ =C, <w, K=1,.N
Vi, 2" ’ it
where

Vo _ W, S0x &Yy /0y
Vo, 6w, /éx B, /dy

Mu (1991} established the following criteria:
The stationary solution ¥,@ is Liapunov stable to perturbations of parameters and ini-

tial data if

Cpi>1, k=L..N, (2.6)
where 1, is the lowest eigenvalue of the following boundary value problem
Vig+ATGg+ig=0 (2.7)
E B (a—[_é) = =]
35 |ap 0, (§ on ds=0, f=1.,J, (2.8}

(‘BJ

Jo
#1 IED“ =90, # ('5%):153’001(@0,...,0) ,

ey

where ¢ is an arbitrary constant, i is the eigenvalue to be determined, and the other nota-
tions have been previously mentioned.

However, how to determine 1, has not been given in Mu (1991), which is of great im-
portance to theoretical research and practical applications. The aim of this paper is to estab-
lish a formula of the lowest eigenvalue A; for periodic zonal channel.
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III. PRELIMINARIES

Before embarking on Problems (2.7) and (2.8), let us simplify it by applying the following
discussion.
Denote A'7%= diag(mi”,...,a}v’iz), a square root of matrix A; A4 172

=diagla, '"?,...ay "), theinverseof 4'77.

Let M= —A4""274""? | then we have

Lemma 3.1, There exists an orthogonal matrix L, such that
(1) L'ML=B=diag(4, ... 5) .
2) 0=4 <.y < max {o;_, +20; +o;4,), N23

2E,EN -1
(3 A4, =0, i=a+a,, N=2,
(4) Any element in the first row of L is positive, where L’ means the transpose of L.
Proof. By the definitions of 7 and M , we can see that M = (M) lis a real symmetric
tridiagonal matrix with

Mo, Moo =ap2,>0, k=1 ,N-1,

by (2.3}, hence, M is a Jacobian malrix. It is proved in matrix theory that an N x N
Jacobian matrix has N distinct real eigenvalues (Franklin, 1968, Sec. 7.11). Thus, let the
eigenvalues of M (say, in increasing order) be 4, , kK =1,..,N , and the corresponding

normalized real eigenvectors bgfk =col(L x....Lyx ), k=1...N . Thatis,
' ML, =L, 3 . (A <d<.<4)

Ly=YLi=1, k=1.,N. (3.1)

Without loss of generality, we may assume that L,, >0 if L, 0 (we will show that
L, #0 k=1..N, later).

Put L=(Ly)= (L,...Ly) , that is, L is a matrix whose k—th colamn is L, .
k=1,..N

By (3.1), Z',,Z',( form an orthonormal set:

— 1 i=j
L'L, =3, = * ’
v v {l] T
hence, L is an orthogonal matrix, i.e.,
L’L = E(the unit matrix) . 3.2

By (3.1), we have
ML=LB . (3.3)

Multiplying both sides of (3.3) on the left by L” and using (3.2), we obtain (1).

Next, we consider matrix — AT , which is similar to M , since —AT
:AI/E(_AI/ZTAI/Z)A—I/E zAlszAil/Z .

First note that zero is an eigenvalue of matrix — AT , sincé zero corresponds to an
eigenvector col (1,...,1). Then applying Gershgorins theorems (Franklin, 1968) to — AT,
(the theorems say, the eigenvalues of an ¥ X N matrix § =(S,,) are in the union of disks
centered at S, “with radius ¥, |84 |+ i=1,.,N , and also in the union of disks centered at

LRy}
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Sy with radius 3|8, | . &= 1....,N.) we obtain (2). While (3) is derived by simple calcula-
1Pk

tion.
Finally, it remains to show that L, #0, £ =1,....N , we prove it by contradiction.
Assuming that there were k and j 2 2 , such that

Lyu=Ly=.=L, =0, L,#0,

then the {f — 1)—th component of the right member of (3.1) would be zero by assumption,
while the {f — 1)—th component of the left would be —(a,_, O:j)] 2 L, #0 , which is a con-

tradiction, and this completes the proof of Lemma 3.1.
Denote the first row of matrix L in Lemma 3.1 by

V=1 lin) (3.4)
and let us introduce a transform I
B=A"LF, (3.5)
and its inverse
F=r4"""%, (3.6)

then we have
Lemma 3.2. Problem (2.7), (2.8) is equivalent to the following boundary value problem
for the uncoupled equations

Vip—Bp+ip=0 (3.7
with boundary conditions
ir| _ T R
Z| -0, Vplw, =0,
Qz) o m 12
Cﬁ (6n ds = ca, v,
QE) 0. j=

(j; (an ds=0, j=1.J. (3.8}

&D,

by the transform (3.5), where ¥ is defined by (3.4), V" is the transpose of ¥, and B is the
diagonal matrix in Lemma 3.1.

Proof. Substituting (3.5) into (2.7) and multiplying the resulting equality on the ieft by
matrix L4 ~'“?  then we derive the uncoupled Eqgs. (3.7) by Lemma 3.1. The boundary
conditions (3.8) are obtained from (2.8) simply by Eqgs. (3.5) and (3.6).

Since the transform (3.5) is nonsingular, hence the two problems are equivalent under the
transform (3.5). This completes the proof.

IV. THE MAIN RESULTS
In this section, we restrict the domain D to be a periodic zonal channel.
D is periodic in x direction with period 21, and closed in y direction, 0y <Y . an,

istheliney =0, and 8D, istheliney =Y . 4.1)
We now consider Problem (2.7), (2.8}, or equivalently Problem (3.7), (3.8), with J =1
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and domain (4.1):

T e gl &7 _ oy -
ViF-BF+p=0, s, o 0, 35,y 0, 4.2)
Ly — LI _ —
‘e - = op = VI
= y:yds 0, ¥rl,_,=0, 7 y:nds ca, 'V | 4.3)

Let p be an eigenfunction of Problem (4.2), (4.3), we write p’ in the form of Fourier se-
ries since £ is periodic in x direction,

= Z Pe(eglx) (4.4)

where py () = col(p 1, ()0 24 ()-8 () » and

e, (x)= (20 " exp (i;‘—‘f) , k=0,+1+2..
By using {4.4), we change Problem (4.2), (4.3) to a boundary value problem for a system
of ordinary differential equations. We state the result as
Lemma 4.1. Problem (4.2), (4.3) is equivalent to the following boundary value problem

- 2.2
A u')~3ﬁ*(y)+(i—"[+‘)mn=0 (4.5)
F@=p(}=0, k#0 (4.6)
Vo, (0)=0, 4.7
PO =) PV By(n=0, (4.8)

by the expansion (4.4), where p', =dp, /dy , o, =d Py /dv® .
Proof. It is simple and omitted.
By the theory of ordinary differential equations, we have
Lemma 4.2, The eigenvalues of Problem (4.5), (4.6) with £ #0 are

2 2
i=d, + #(’% + "—2) . k=12 j= LN @9)
! 14
where 4; is the j—th diagonal element in matrix 8.
Now we can give our
Theorem 4.1. The lowest eigenvalue of Problem (2.7), {2.8) with domain (4.1) is equal to
the unique root of equation

K(}=0, Aie0m), (4.10)
where
Lhcot(¥d'hy XL cth(Y(d, — 1)
K= - - L L , 4.11
( ) 1:,2 J; (l}.—i)”_" ( )

2
. n ol
mi = min (.12 Cart ) s (Lyeal )=V (4.12)
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Proof. Since any eigenvalue of Problem (4.5), (4.6) with k #0 is no less than m by com-
parison between (4.9) and (4.12). We need only to find the eigenvalue of Problem (4.5), (4.7),
(48),(k=0) forl<m .

First, we solve Problem (4.5}, (4.8) (X =0) for the moment, and obtain

Ly (2, (4, — )~ ich(¥ =), —HF)
shiY(d, —)'"%)

Paly)= — A<,

CL]j(zizl (A_ii))_lfzcos((};_y)(}-_ij]l/z)
sin(¥(a—4,)' %)

Puy)= ,if A4 4.13)

Pp(p)=constantif 1=/ andc¢=0 .

Though we can show that the eigenvalues of Problem (4.5), (4.7), (4.8) (k¢ = 0) can not be
Zero or negative, we need not to do so since the eigenvalues of Problem (2.7}, (2.8) are ail posi-
tive (Mu, 1991). Therefore, let 0 =4, <A <m, (m <A, <i; <...<4y,) and let the corre-
sponding solutions of (4.13) satisfy (4.7), we obtain (4.10).

Finally, we shall prove the existence and uniqueness of the root of (4.10).

By Lemma 3.1, L, and L,;, are positive, then K(4) of (4.11) is strictly decreasing in A
€(0,m) , and K(4) lends to positive infinity as 4 tends to zero. On the other hand, if m = 1,
<n /(2¥) then K(A) tends to negative infinity as A tendstom ; if m=n> / 2Y)* <4i,,
then Ié’ (1) tends to negative as . tends to m . Hence there i3 one and only one root of (4.10)
in (0,m) . This completes the proof.

Remark. We can find the matrices B and L of Lemma 3.1 simply by computer
{Franklin, 1968; Dubrulle, et al, 1968).

For N=2 . wecalculate B and L explicitly and have

Corollary 4.1. The lowest eigeavalue of Problem {2.7), (2.8) with domain (4.1} is the only
root of

wcot(YA'?) o cth(Y(z, +ay —4)'"?)
FULE] (x, +ua, _1)1/2

=0,

2
. 1
em), m=mnl e, +2, , —=|.
(0m) ( YT e )

The Formula (4.11) is rather complicated and (4.10) can be only solved by computer.
Therefore, it is useful to give a positive lower bound of the rcot of (4.10) both for
computational and application purposes. To do this, we first give

Lemma 4.3, The following inequalities hold;

coLx —2_4 ( E)
m BE=xT -5 xe(03),

2) co—m<x72+% N x>0,

Proof. (1) Represent sinx and cosx in the form of infinite products, we have
(Gradshteyn et al., 1980}
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«© 2
sinx=x1'l(l— xz)!
k=1 (k)

“ 2
COsX = H(] _x—l) ,
SN (2

4
2
X k4

E)

2 I, .2
cotx  (1—axt /e \= (07X 7NN ot ),
= 2 11 2 ] > 2 =X
x A (1—x* / (kw)
x€(03) »

since every factor in the above infinite product is great than one.
{2) Since 8x”exp(2x) /3 >0 , (x >0) , integrating both sides of above inequality from
0to x successively, we have

201 —2x+2x ) exp(2x) 2 >0
3 3 :
_&x i) o
(1 3 + 3 exp{2Zx)—1 3 >0,

2 2
(l—x+x—)exp(2x)—1—x—% >0,

3
hence,
exp(2x)— 1> —2%
(l—x+%)
consequently,
2
cthx =l+ex 2x)—1 <x_2+l
x x 3’
as required.
Now, note that
Yei — 0’2 (¥l —m)'’?
cth( Y, 1)/2 )<c (.(’ ml)“ ), i L <i<m,
¥4, —4) Y(i, —m)

then by Lemma 4.3, we have

KD ,af L 43 _,2f 1 1
TR T Bl (A, —HY* 3

L] _ 172
_y G T ey (4.14)

P iH Y().j—m)l/z
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It is clear that R{A)=0 is essentially a quadratic equation of A , and there is a unique
root in (Q,m) ,

R(N=0, hem).

Hence, K(h)> 0 by (4.14), therefore # is a lower bound of the root of (4.10), since K{A)
is strictly decreasing by Theorem 4.1.

V. CONCLUSION

We have found a formula of the lowest eigenvalue with a lower bound of Problem (2.7),
(2.8) in a periodic zonal channel (4.1). There fore the nonlinear stability of the multilayer
quasi—geostrophic flow in the zone can be studied by Criterion (2.6) and Formula (4.10).
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