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ABSTRACT

An accurate and rapid method for solving radiative transfer equation is presented in this paper. According to the
fact that the multiple scattering component of radiance is less sensitive to the error of phase function than the single
scattering component is, we calculate the multiple scattering compoenent by using delta—Eddington approximation and
the single scattering component by solving radiative wransfer equation. On the ground, when muliple sattering com-
ponent is small, for example, when the total optical depth ¢ is small, the accurate radiance can be obtained with this
method. For the need of the space remote sensing, the upward radiance at the top of the atmosphers is mainly
studied, and an approximate expression is p d to correct the multipke scattering compoaent, Compared with the

more precise Gauss—Seidel method,the reselts from this method show an accuracy of better than 10% when zenith
angle #<56° and 7<1. The computaiional speed of this method is, however, much faster than that of
Gauss—Seidel method.

I. INTRODUCTION

The upward radiance at the top of the atmosphere is important in many aspects in space
sensing. For example, the background radiance is main source of the light noise in lidar re-
mote sensing from space (Sun, 1986). On the other hand, the essential atmospheric and
aerosol parameters on a global scale can be obtained from satellites by measuring the
emergent outward intensities at the top of the atmosphere.

There are many methods for solving the radiative transfer equation. The methods which
are usually used are Spherical Harmonics method (Dave, 1975), Discrete—Ordinates method
(Liou, 1980), and Gauss— Seidel method (Box and deepak, 1979). In these methods, the inten-
sity is expanded in a Fourier cosine series in terms of azimuth angle, and phase function is ex-
panded in a Legendre polynomial series. Because of the highly asymmetric of the phase [unc-
tions, the Legendre expansion of phase function has to be expanded in many terms
(Wiscombe, 1977; Wang et al, 1990). This may result in many—term expansion of the
intensity. While the solutions yield accurate resulis, they often take a large amount of com-
puter time. Therefore, some authors presented some simple methods, for instance:
two-stream method, Eddington method, and delta—Eddington method. But these methods
" are only suitable for calculating flux densities, but not intensities.

Qiu {1986) studied the effect of Legendre expansion of scattering phase function with a
finite number of terms and suggested an improved algorithm for solving radiative transfer
equation. He pointed out “through correcting the single scattering component by the exact
phase function, an accurate radiance solution can be obtained under Legendre expansion of
phase function with less terms”. According o his result that the error of the radiance sclution
is mainly caused by inaccuracy of the single scattering component as expansion terms of
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phase function are small, this paper tries to find a simpler way to obtain the accurate radiance
solution.

In this paper, the radiance solution is obtained by adding the multiple scattering compo-
nent calculated by delta—Eddington method and the accurate single scattering component.
When we calculate the upward radiance at the top of the atmosphere, we also confirm a sim-
ple approximate expression to correct the multiple scattering component. The result we get is
accurate enough with the error of a few percent when 8 <30 ° .

I1. THEORY AND METHOD

The transfer equation for diffuse solar radiance I(r,t4,¢¢) in a plane—parallel atmosphere

dilz,p, 23 il
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where ¢ is the optical depth, 4 is the cosine of zenith angle, ¢ is the azimuth angle, @ is the
single scattering albedo, nF, is the solar irradiance perpendicular to the direction of inci-
dence, P{s, 0.4, 0"} is phase function defining the light incident at ¢'," which is scattered in
the direction pi,p. The second and third terms in the right side are source functions
respectively due to multiple scattering and single scattering.

It should be noted that in Eq.{(1),positive 4 denotes the upward radiation,and negative y
denotes the downward radiation.

We see from the transfer equation that the source function of the single scattering is
directly proportional to the phase function, and it is quite sensitive to the expansion error of
phase function; the source function of multiple scattering is the product of multiple scattering
radiance and multiple scattering phase function to be integrated in turn over 4% steradians
with respect to ditde, and it is not so sensitive to the error of phase function Therefore, when
phase function is expanded with less terms, the less accurate radiance solution is mainly
caused by the error of the single scattering component. Therefore, by adding the exact single
scattering radiance to the multiple scattering component obtained under Legendre expansion
of phase function with less terms, we may obtain an accurate radiance solution. In this paper,
we use delta—Eddington method to calculate the multiple scattering radiance.

Eddington’s approximation assumes that the radiance can be given by

Hrp) =1, +vcospl, +vsingl, +pi, , 2)

where v=sinf, and /;,/,.7, and f, arc all functions of © only. The phase function may
therefore be approximated by

P(®) =1+ 3gcos(@) . (3)
cos(®) = ug + (1 — )2 (1 — ) coslp — 97}, @
where © is the scattering angle,
. b1, 41,
Using (2).(3)and (1), and setting =—L =0, wehave
ox dy
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We use delta-Eddington approximation to redefine the asymmetry factor,the single—scat-
tering albedo.and the optical depth in the forms:

g=g/(1+g, (7a)
o' =(01-ghad/{1-g'w), {7b)
T=(1—-&g*) . (7c)

Assume that there is no diffuse downward radiation at the top of the atmosphere, 7 ( 0,
— )} =0. The upward radiation at the bottom of the atmosphere can be determined ac-
cording to the practical conditions.

We may obtain I, and 7, f{rom {5a){5b} and the boundary conditions, and then we
may obtain J from (6a), (6b) and (2). In this paper, we use f,, to indicate the radiance calcu-
lated by delta-Eddington method.

When only single scattering contribution is considered, the radiative transfer equation is

; -
#M = He,it,0) — = nFy PULP, — .0 Jexp{ — T/ 1ty . ®)
dt 4n
The boundary conditions at the top and the bottom of the atmosphere are
10, —4e)=0, (9a)
Hopp)=0 . (9b)

We obtain an equation for J (we define it as f;, where “s” stands for single scattering)
by using delta—Eddington method:

Fy =I5 +veosely + vsingl, +pl, | (10)
where
E=Cexp(—V31)+ C,exp(V31) — zexp(— v/ 1) | (11a}
= - E[Clexp(—ﬁr] - Czexp(ﬁr)] + fexp(—~ 1/ 1) . (11b)
L= %F“sinencosrpoem{— T/ Uy, (12a)
r= % Fysind,singgexp(— 1/ #y) , {12b)
and

a=3BF,uy (1 +g)/ H1—3u3)
B=30F, (1 +3gs3) /41 = 31)

C,, C, aredetermined by boundary conditions {9a), (9b).
The exact solutions of Eq.(8) at the top and the bottom of the atmosphere are
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FO.unp)= ﬁ%l’(ﬂ,w. — g0 W1 —expl— {1/ p+ 1/ 8]} . (13a)
B e e s I A
iz, — )= ek, . (13b)
" Pl oy, — uu,%)eprg) = ay)
From all these, we obtain the intensity solution:
(=1, —B+r. ' (14)

In the delta~Eddington method, the phase function is only expanded one term, the error
of phase function will influence the accuracy of the multiple scattering result. When the up-
ward radiance at the top of the atmosphere is calculated, the proportion of the multiple scat-
tering component is greater than the single scattering component, and the influence of the cal-
culating error of the multiple scattering radiance can not be neglected. In this paper, we con-
firm a simple approximate expression to correct the multiple scattering radiance.

The approximalte expression is

Im =I’;(,u' /#)3.0—4.8 l'ﬁ , (15)

where

p=I1, -1,

#° =007+ (1 — py) X 015t
A is the albedo of the ground.
The intensity solution is
=1"+r. (16)
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Fig.l. Comparisons of the radiation intensities and their corresponding single scaltering compo-
nents from Gauss—Seidel method f°, I* and delta-Eddington method g, Iy Also shown is
the intensity solution I from Eq.(16).




Fo=1, &=1, 1=06(z, =051, =0.1), 4=0, p,=06139, ¢=0".

Fig.]1 gives an example. It shows the radiation intensities and their corresponding single
scattering components, on the top of the atmosphere, calculated by Gauss—Seidel method and
delta-Eddington method as a function of zenith angle # (" and I are from the
Gauss—Seidel method, and J, and [; are from delta—Eddington method). In addition, it
also shows the intensity solution derived from Eq.(16). The optical depth 1 = 0.6, the solar
zenith angle cosine y; = 0.6139,0 = 0.

From this figure, we can sec that although f; and J, diverge much from the accurate

i
sponding radiation intensities {Fy =7, —t;, I" =1 — ), the differences, which are

and 7, respectively, if we subtract the single scattering components from their corre-

multiple scattering components, are very similar. Through correcting this multiple scattering
component Iy, we can derive an accurate intensity solution /. When the zenith angle 6 is
less than 30°, the relative error is less than 3.1%.

HE .COMPARATIVE RESULTS

Table 1 presents the comparison of downward radiation intensities calculated by Eq.(14}
and the results presented in the paper of Weinman and Twitty (1975). The problem is as-
sumed to be characterized by =F, =1, 1, =0.5, 1, =0.145, p=4g, =0.966, the phase
functions are obtained from their Table 1 and Eqs.(2a), (2b). From our Table 1, we can see
that our results agree well with the exact numerical solutions, the overall accuracy is better
than 4%. If we calculated the radiation intensities with delta—Eddington method, the relative
error of the results could be 95% . From Table 1,we can also see that the intensity is mainly
composed of its single scattering contribution. Therefore, the error of the multiple scattering
contribution has little influence on the calculating result of the intensity. We can derive the
accurate intensity solution by adding the accurate single scattering component and the multi-
ple scattering component caiculated by delta-Eddington method.

Table 1. Comparison of the Exact Intensities and the Ones Calculated from Eq.(14). g = g, = 0.966, 7, =0.5, 1,

={.145
Almucantar Scallering I [ I ER(%)
azimuth angle Exact Calculated Single Relative
wpldeg) B(deg) aumerical from Fq.(14) scatter error

0 0.0 2.35%0 23271 2.2885 14

1 0.3 23390 2.3001 2.2615 1.7

2 a5 2.2820 23532 2.2146 1.3

4 1.4 2.0730 20514 2.0127 1.0

& 1.6 1.7810 1.7121 1.6735 39

8 21 1.4700 14172 13786 3.6
10 26 1.1910 1.1577 1.1191 28
12 3.1 0.9704 0.9525 09139 18
14 36 0.8112 0.8006 0.7620 1.3
16 4.1 0.7001 0.6907 0.6522 1.3
18 4.4 3.5198 4.6096 0.5711 1.6
20 52 0.5574 0.5361 0.4976 3.8
25 6.4 04444 0.4329 03943 26
30 1.7 0.3734 0.3611 0.3226 33
35 8.9 0.3239 0.3182 0.2797 i.8
40 10.2 0.2875 0.2859 0.2474 0.6
50 126 0.2376 0.2427 0.2043 2.1
60 149 0.2044 0.2105 01722 30
] 17.1 01809 0.1861 0.1479 29
80 19.2 0.1629 0.1677 0.1296 3.0

90 21.1 (.1487 0.1545 0.1165 3.9
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Fig.2a. Compazison of f calculated from Eq.(16) Fig.2b. Comparison of [ calculated from Eq.(16)
and I°  derived from Gauss—Seidel method for dif- and I* derived from Gauss—Seidel method for dif-
ferent t.Fy = 1,& = 1,7 = 0.33(z, =0.25, r, ferent 7. £y = 1,@=1,7=1.0(r, = 1.0z, = 0).4.0(z,
= 0.1),0.6(r, = 0.5,7,, = 0.1),4 = Dig = 0.4617, @ =40, =0), A=0, g, = 075540 = 60"

=60°. Dashed lines indicate the calculating result of
Eq.(16), Solid lines represent the Gauss—Seidel solu-
tion.

When we calculate the upward radiance at the top of the atmosphere, we apply Eq.(15)
to cotrect the multiple scattering component, and Eq.(16) to calculate the intensity.
The figures below show the upward radiances at the 1op of the aimosphere The computa-
tions are all made for the analytic Henyey—Greensiein phase function
1— 32
{1+ g — 2gcos®)*/?

P(@)=

The asymmetry factor is given by

=gdrl‘i +gmtm

g rd +1:ﬂl

where the aerosol scattering asymmetry faclor g, =0.7, the molecule scattering asymmetry
factor g, =0, 1, and 1, are optical depths of aerosol and molecules respectively.

Fig.2a presents the intensity calculated by Gauss—Seidel method and Eq.(16) as the func-
tion of zenith angle. The total optical depth 7= 0.35,0.6,4, =0.4617. In this and the (ollow-
ing figures, the dashed lines always indicate the calculating resulis of Eq.(16), whereas the sol-
id lines represent the Gauss—Seidel solutions,

From Fig.2a, we found that the results of Eq.(16) agree very well with the Gauss—Seidel
sclutions. In the case z =9.35, and 1=0.6, when the zenith angle 6 < 50°, the relative er-
ror is less than 5.9% and 5%, respectively.

Fig.2b presents the same case as in Fig.2a, but for 1= 1.0.4.0, 4, = 0.7554. By com-
paring the results, we can see that the agreement is excellent when = 1.0, but the disagree-
ment is significant when t = 4.0, especially for large zenith angle.

Tables 2a and 2b present the calculating results, as well as the relative errors,corre-
sponding to the cases of Figs.2a and 2b. Here again, we can see that Eq.(16) is feasible when
7=10.35,0.6, and 1.0, but when 7 is larger, our algorithm needs to be improved.
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Fig.3. Comparison cof { cakculated from Fq.(16) Fig.4. Comparison of / calculated from Eq.{16)
and [*  derived from Gauss—Seidel method for dif- and 7° derived from Gauss—Seidel method for dif-
foremt 4.Fy = 1,8 = 1,1 = 0.35(r, =0.25,7,, ferent@. F, = 1,@=1,7=0.35{r, =0.25,1,
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Fig.5. Comparison of / calculated from Bq.{16) and ! *  gderived from Gauss—Seidel methed for
different p. Fy=1. =1, r=06lz, =05, r,, =0.1), 4 =0, p=60°.

Fig.3 gives the comparative results of the two methods for the ground surface albedo
A=0204, and 0.8. The agreements between § and J*  are good with the errors less than
8% when # <60°.

Table 2a. Relative Error for =035, 0.6, when Fy =1,@=1, 4 =0, g, = 04617, p =g0°

g (deg) 10 20 30 40 50 60 70
t=035, ER{%)] 24 1.2 0.0 1.7 59 17.0 52.2
r=0.60, ER(%)| 5.0 4.9 3.0 4.7 2.4 6.0 34.4

Table 2b. Relative Errorforr=10, 40, whenFy =1, =) 4 =90, #, =0.7554, @ = 60°

8 (deg) 10 20 30 44 30 50 70
z=10,EBR{(%)| 36 5.2 7.1 8.4 15 0.6 22.4
=40, ,ER(%)| 6.0 0.5 9.4 26.8 60.6 | 1354 ] 337.5
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Fig.4 presents comparisons of / and ™ for the two values of single scattering albedo
&=0.9, 0.7. It shows that when & = 0.9, the agreement between/ and I° is again good,
the error is less than 8% when 8 <350%; but when & =0.7, the agreement is not as good, the
error may reach 27% when ¢ < 50° . This indicates that as the absorption of solar radiation
increases,the accuracy of our algorithm will decrease,

Fig.5 shows the comparison of the radiation intensities as a function of solar zenith angle
for three values of zenith angle cosine £ = 0.991, 0.794, and 0.563. I1 is seen that the compar-
isonof f and 7" patterns yields rather close agreement. For the three different y, the errors
are less than 7%. This indicates that our method is feasible for almost the full range of solar
zenith angles.

Iv. SUMMARY AND CONCLUSIONS

In this paper, an easy method for solving radiative transfer equation is presented and
numerical tests are given, The agreement of the results show that this method is reasonably
correct and feasible.

1. To calculate the downward radiance at the bottom of the atmosphere, when the solar
zenith angle is small, and for a small total optical depth,the error of delta—Eddington method
solution for multiple scattering component is too small to have much influence on intensity
result. We can derive the accurate radiation intensity by using Eq.(14).

2. To calculate the upward radiance at the top of the atmosphare.the error of multiple
scattering contribution must be taken into account. We confirm a simple expression to correct
the multiple scattering result. By comparing our algorithm results with the Gauss—Seidel ones
for several optical depths, surface albedos, single—scattering albedos, and zenith angles, we
can see that our results are predicted to an accuracy of better than 10% when 8§ < 50°, t< 1,
and & >0.7. This indicates that our method can be effectively utilized in clear atmospheric
conditions.
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