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ABSTRACT

We have sxamined, in Part I, the propagation mechanism and geostrophic property of classical Rossby waves in
a non—divergent barotropic atmosphere. As we found that the non—divergent Rossby waves do not propagate in a
hydrostaticaliy equilibrium atmosphere, and do not manifest a good geostrophic property, an alternative large scale
circulation pattern of geostrophic waves has been proposed (McHall, 1991a). The propagation mechanism and
geostrophic property of these waves are examined in the present study.

L. INTRODUCTION

It is discussed in Part I that the classical Rossby waves in a non—divergent atmosphere
do not possess a propagation mechanism and good geostrophic balance, so they cannot be
applied to represent the large scale waves in the extratropical regions. Although we have some
other Rossby wave patterns in which divergence is not ignored, the geostrophic property has
not been examined. This property is essential for a theoretical perturbation model used for the
study of large scale circulations, which are constrained to be geostrophic balance and
hydrostatic equilibrium.

To ensure the geostrophic balance for large scale wave solutions, McHall (1991a} intro-
duced the geostrophic perturbation equations. The wave solutions called the geostrophic
waves have been used to explain the occurrences and distributions of the most fundamental
large scale circulation patterns, such as the planetary stationary waves, blocks and
stratospheric sudden warmings (McHazll, 1991a, b, ¢, 1992a, b). The propagation mechanism
and geostrophic property of the waves have not been discussed yet, but will be discussed in
the present study.

11. B-EFFECT AND WAVE PROPAGATION
1. A Simple Review

The frequency of geostrophic waves discussed by McHall (1991a} is given by
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where, § denotes ageostrophic coefficient; o, and o, are the baroclinity and static stability
parameters respectively. The second term on the right hand side of (1) represents the
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intrinsic frequency of the waves, while the first term gives the frequency produced by
advection of mean fields. The corresponding phase speed reads
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Both the frequency and phase speed depend on the f—effect, Earth’ s curvature and mean
temperature structure represented by k”;. When the effects of Earth’ s curvature and mean

temperature structure are ignored, the dispersion relation becomes that of Rossby waves.
Here, we discuss firstly the contribution of g—eflect to wave propagation.

It was recognized widely that the dynamics of Rossby waves is associated with conserva-
tion of absclute vertical vorticity on a f—plane. As explained initially by Rossby (1946), the
conservation of vorticity makes air parcels tuwrn back in opposite curvatures on the northern
and southern sides of wave Lrajectories respectively. According to this interpretation,
the A-effect should increase wave frequency in mean westerly flows. But it is not true as
shown by (1). Thus, the mechanism of large scale wave propagation related to fi—effect
should be re—studied.

Owing to the f—effect, the phase speed has a westward component relative to mean
zonal flows. Platzman {1968} explained the westward drift of Rossby waves by using the dia-
gram shown in Fig. la:

If we regard the variable Coriolis parameter as a field of East—West ‘lines of force’ , we can say
that by culting these lines the transverse velocities in the wave create an alternaling row of induced
vorticities and corresponding induced velocities. The phase propagation that results always has a west-
ward component, an anisotropy that stems from the fact that the gradient of Earth’ s vorticity points
northward.

Whereas, Holton wrote (1979):

Rossby wave propagation can be understood in a qualitative fashion by considering a closed chain
of Muid parcels initially aligned along a circle of latitude. ++ [If the chain of parcels is subject to a
sinusoidal meridional displacement then the induced perturbation vorticity will be positive {i.e.,
cyclonic) For a southward displacement and negative (anticyclonic) for a northward displacement as in-
dicaled schematically in Fig. 1b.

The meridional velocity field associated with the perturbation vorticity field advects the chain of
fluid parcels southward west of the vorticity maximum and northward west of the vorticity minimum.

It is noted, however, that in the first case, the air parcels moving northward or southward

* n

Fig. 1. Sketches for westward drift of Rossby waves relative to mean zonal flow given by
Platzman {1968) and Holton (1979) in (a) and (b}, respectively.
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do not necessarily possess positive or negative vorticity, though they may produce the positive
or negative relative vorticity. So distribution of induced vorticity may be different from that
shown in Fig. 1a. While, the other explanation suggesis that the wave lines are composed of
the same air parcels when they propagate. Tt is true only for stationary waves. In the
following, the f—effect on wave generation and propagation will be explained in an alierna-
tive way.

2. Inertial Circles on f~Plane

In classical physics, a mechanic wave is recognized as propagation of vibrations, other
than displacement of medium mass. [t propagates in at least two directions forwards and
backwards relative to the medium. [ts dynamic mechanism is associated mainly with linear
processes. While, the geostrophic waves propagate in one direction only. These waves are an
example of the kinematic waves discussed by Lighthill and Whitham (1955). The propagation
of kinematic waves depends on advection of physical quantities, such as mass, temperature
and vorticity, constrained to a special direction. The relation between Rossby wave propaga-
tion and vorticity advection was illustrated once by Rossby (1940).

The pg-effect on wave propagation may be inspected by comparing the air motions on
f and f-planes. Without a horizontal pressure gradient and friction, the momentum equa-

tions are written as
du

dt =5 )
dv _
e fi. 5

The velocity components of air parcels on an f-plane can be given by

u = Asin(f} + 7}, v= Acos(fi + 1),
where the constants 4 and y are determined by initial velocities. The trajectories of the par-
cels are circles of radius A / [

2
(x—x, P +(r—») =ij~g-.

in which, x, and y, indicate an initial position. These circles will be referred to as the fcir-
cles. Here, we do not call them inertial flow or inertial circles as other authors do (e.g.,
Holmboe et al., 1945; Holton 1979), because they are only a particular example of inertial cir-
cles. It is obvious that absolute angular momentum is conserved along the circles on
an fFplane. The centers of fcircles do not move in a stationary medium, except when air
parcels cross the equator.

Il the fcircles are superimposed on a mean zonal flow, they will be advected by the
mean flow. The combined movement of each parcel may produce a wave—like motion as
shown by the line wiih circles in Fig, 2, In this figure, we have used

f=120sin45° , y=0, A=15m/s

and ¥ =8 m /s in a mean westerly flow, but = — 8 m /s in a mean easterly flow.

The depicted moticn is not considered as a classical mechanical wave which is propaga-
tion of vacillation but not the air parcel. The fcircles represent solely the motion of air par-
cels themselves, and may be considered as an example of the kinematic waves proposed by
Lighthill and Whitham (1955). The propagation mechanism depends essentially on advection
of mass field governed by a nonlinear process in a Eulerian representation.
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Fig. 2. The irertial circles in the mean westerlies a) and mean casterlies by, The circles and as-
terisks indicate & and f-circles respectively. The time interval between two successive cir-

cles or asterisks is one hour,

In a mean zonal flow with velocity u, the Fcircles move at velocily ¢, =u. The dis-
placement over a time period 2n /v is

For convenjence, we call L ;. the kinematic wavelength. As the mean zonal flow does not af-
fect the frequency of  f~circles, we have v= £ and so this distance is given by

which depends on mean zonal flow. This distance may be viewed as the zonal wavelength of
the kinematic wave in the mean field without horizontal pressure gradient. If we define a cir-
cle number or a kinematic wavenumber as
2n
kci’rc = L
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This is similar to the relationship between wave frequency, phase velocity and wavenumber
in the classical mechanical waves.

[t has been made clear now that the idealized f-circles do not move westward relative to
the mean flow over a period. This is not the case for the inertial circles on the Earth’s spheres.
As a particular example, we will discuss in the following the inertial circles on a §-plane.

3. Inertial Circles on B—Plane

On a g-plane, we may set f=fB,y. Here, §, = f / »,. in which f is the Coriolis
parameter al y=y,. So, (4)is replaced by
du 2
i

t 4
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and follows that
i
H=uy +TD(}’1 - }’;).

If y, is chosen at the point where u,=0, we see that u>0 for |p|>|y,| but u<0 for
|| <|»q]- Moreover, the magnitudes of u at the positions of y, + Ay are different from
each other. It implies that the air trajectories on the f—plane will not move in closed cycles as
onan fplane.
When we use
dv _dvdy _ dv
dr dydr dp

(5) gives

B; Bs
y= i/vﬁ =W D) Tt — Bows 07 — 30,

It is equivalent to the relationship of kinetic energy conservation:
v=tJuy +vh—ut.

where, u; and v, measure the initial velocities at position y.

In the absence of a horizontal pressure force, an air trajectory of f~circle is represented
in Fig. 3. Since the Coriolis force increases poleward, the trajectory curvature is not the same
everywhere, but increases poleward too. Therefore, it draws unclosed circles on the f—plane
referred to as B-circles, which are another example of inertial circles. Unlike the f-circles.

" the fi—circles shift westward even if there are no mean horizontal flows.

When the f—circle is advected by a mean flow, it may produce a kinematic wave too.
An example is depicled by the lines with asterisks in Fig. 2. The provided mean zonal flows
arc the same as those applied for the fcircles drawn previously. This motion is not a real
mechanic wave also, but a kinematic wave on the f-plane. A report of the observed inertial
circles in a deep current of ocean can be found in the study of Nan” nitti et al., (1964}. The
inertial circles in the oceans account for a significant amount of energy as shown by Warsh el
al. (1971).

Fig. 3. The §-circles in a stationary medium.
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If the f-circles move westward at ve]ocityu ¢, in stationary media, they will move at the
velocity

cg=utc, N

in a mean zonal flow of velocity w. So the drift velocity in a mean westerly flow decreases,
but increases in a mean easterly flow with respect 1o the ground. This is shown clearly by
comparing the £ and f-circles in Fig. 2. Consequently, from (6} and (7), the f—effect re-
duces the frequency of inertial circles in mean westerlies, and increases the frequency in mean
ecasterlies. This is shown also by Fig. 2.

When there is no horizontal pressure gradient in the atmosphere, the f-circles in Fig. 2
have very short kinematic wavelengths. If the westward drifi of the f—circles is estimated by

Liye
Car B o ®)

approximatety, we find ¢, ~ —8.86 km / day for L, =500 km at latitude 45 ° . This speed
is very low as shown in Fig. 2. However, it increases greatly with wavelength.

. PROPAGATION MECHANISM

The inertial circles discussed previously are associated with the motion of individual ajr
parcels in an undisturbed medium. If all the air parcels in the medium move in the f-circles,
a kinematic wave pattern in the whole medium may be produced. In this case, the pressure
field is disturbed, and a vertical motion connected with horizontal convergence may be in-
duced by the waves as a secondary circulation. These kinematic wave mechanisms are in-
volved in Rossby waves and geostrophic waves. As these waves are associated with inertial
motions in the atmosphere, their frequency depends substantially on meridional variation of
horizontal inertial force. However, they are not the pure inertial waves since the wave mecha-
nism depends on pressure force also. This kinematic wave dynamics is related to advection of
physical quantities, such as mass and vorticity in a divergent atmosphere, and so is governed
by nonlinear processes. The wave—like properties may be described approximately by
linearized equations when produced perturbation amplitudes are relatively small. However,
the wave solutions may still reflect the nonlinear property of the kinematic waves, because the
propagation velocity has one direction only.

As the inertial circles drift westward on the spheres, these kinematic waves propagate
westward relative to the mean zonal flows. It is difficult in mathematics to derive the analyti-
cal solution of the westward drift velocity for a f—circle in an undisturbed medium. Whiie,
for the waves produced by inertial motions in a zonal sysmetric pressure gradient field, the
westward drift can be obtained readily. In this case, the left hand sides of (4} and (5) can be
expanded into partial derivitives, and the derived westward velocity on a f~plane is the same
as that of the classical Rossby waves and is also the c, given by (8). The pressure
perturbations in the Rossby waves do not make any effect on wave frequency.

Apart from the f-effect discussed previously, the propagation mechanism of
geostrophic waves is also related to the effect of the Earth’ s sphericity as shown by (3). This
effect is greater than fi-effect at high latitudes, so that it cannot be ignored there. When
wave frequency is affected by p—effect alone, westward phase speed increases at higher lati-
tudes. This however is not consistent with observations, Thus, the effect of the Earth”s
sphericity may be of significance for propagation of large scale waves. )
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The term including the Earth’ s sphericity reflects the effect of horizontal divergence as-
sociated with the Earth’s curvature. If horizontal divergence of the geostrophic waves is pres-
ented, we may find that the terms involved in the divergence appear in the dispersion relation
also but not in the classical Rossby waves. One of these terms depends on the Earth’ s
sphericity. As shown by the continuity equation on the spheres {referring to Part [), when air
parcels move equatorward, they produce horizontal divergence and then reduce vertical
vorticity, so that the air parcels will return in a clockwise sense. The reverse happens when air
parcels move poleward. Therefore, the horizontal divergence produced by Earth’ s curvature
also reduces the eastward phase speed in a mean westerly flow. As the horizontal divergence
increases poleward, the westward phase speed increases more rapidly at higher latitudes, so
that the waves propagate easiward more slowly rather than more quickly in the mean westerly
flow.

Another term which affects the wave mechanics is associated with the mean temperature
structure represented by ki. When an air parcel has a vertical component of motion in a
hydrostatically stable atmosphere, it will oscillale around an equilibrium height. From (1) and
{3), this effect is combined together with the contributions of the f-effect and Earth’s curva-
ture. Because without the fi—effect and Earth’ s curvature, we may prove that air parcels in
the waves will move on potential lemperature surfaces, and therefore the motions will not be
affected by vertical oscillations.

VI. STATIONARY WAVELENGTH

In a mean westerly flow, the zonal phase speed will be equal to or less than zero, when
zonal wavelength of geostrophic waves equals ot exceeds the stationary wavelength, evaluated
by

L= 2
\/§(1+azf-?)—k§"

derived from (3), Unlike the stationary wavelength of the classical Rossby waves given by

{Rossby, 1939}
I =2n U R
: N B

it depends on the Earth’ s sphericity and atmospheric thermal structure as well as the mean
zonal flow. The stationary wavelength of the classical Rossby waves tends to infinitely large
near the poles. This does not agree with observations. The large scale stationary circulation
patiern in the polar regions of winter stratosphere is generally characterized by a wave |
superimposed on the mean flows. This circulation has been simulated successfully by numeri-
cal models (Matsuno, 1970; Huang and Gambo, 1982; Lin, 1982). In the geostrophic waves,
however, the stationary wavelength decreases poleward. It decreases also when baroclinity is
increased.
The real number of the stationary wavelength depends on the condition

EFfe.m'u
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Here, we have used (2). As on isobaric surfaces

this condition js replaced by

‘arl> b (10}
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If baroclinity is lower than a certain limit in a mean easterly flow, stationary waves cannot ex-
ist. This is a possible reason for the absence of stationary waves in the stratosphere where
temperature gradient is generally smaller than below.

Moreover, the stationary wavelength of geostrophic waves depends on baroclinity. The
stationary waves in condition of higher baroclinity possess shorter wavelengths. Thus, the
progressive waves may become stationary when they propagate into a highly baroclinic area,
though the wavelengths are unchanged.

¥. GEOSTROPHIC BALANCE

The geostrophic balance is a basic property of large scale circulations in the atmosphere.
Any perturbation model proposed for the study of large scale circulations must possess this
property. Since the planetary Rossby waves do not exhibit this property, especially at lower
middle latitudes as discussed in Part 1, the geostrophic waves have been proposed for study of
the large scale circulations. The geostrophic property of these waves is examined in this sec-
tion.

We consider, firstly, the Rossby number of the geostrophic waves. The magnitudes of
Rossby number concerned with zonal and meridional components of momentum may be es-
timated from

1 du 1 dv

R”"'FEE, R”“‘Ed—t

respectively. Since
du Ay v

dr Tox’ dr Uix:

we have
w du u 1 v f.‘i ’
Re~dma~p™ Rao™yo TFY
Applying the typical scales
#~10'm/s, f~10"*%"!, ¢~10°m? /5%,

E~10""m”™", m~10""-10"°m ',

we see R, R, ~ 10~ 2. It has been noted in Part I that a small Rossby number does not
always suggest a good geostrophic balance. The geostrophic property of geostrophic waves is
then examined further by comparing the streamlines and geopotentials in the waves.

The geopotentials of geostrophic waves are given by (McHall, 1991a)

(P’ o ¢ei‘(v!*kx+my+lp)‘
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GEOSTROPHIC WAVES
SOLID: GEOPQTENTIALS, DASHED: STREAMLINES
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Fig. 4. Geopotentials (solid) and streamlines {dashed) of planetary geostrophic waves.

Also, the streamlines may be evaluated numerically from the geostrophic perturbation
velocities

V!g - Ifmei(rl—kx +my+ip) , W= ﬂcbei[w —hx-+my+ip )
S s
Here, the geopotential perturbation amplitude is calculated from
pr L
140 _ g .=

dy kP +ED)

Since dy=adep, itisreplaced by

| dd 1 _ 2o,
Tdo — —. (=
@ (1 + {sin” g)cospsing ok

If we set A =sing, it becomes

140 1, A A
®dA A (100 -AD) O+ +IAY

and follows that

=0, sing

— an
[coslcp(l + ¢sin? @) :Im e

in which, @, is a positive constant determined by the observed amplitude at a given latitude.
At the equator where no Coriolis forces exist, geostrophic balance cannot hold and so the
geostrophic waves do not occur.

Using the typical values

D, =700 m* /s*, u=15m/s, m=k {=0.005

the calculated geopotential perturbations and streamlines of the planetary geostrophic waves
with wavenumbers 2 are depicted in Fig. 4. It is shown that the streamlines are approximately
parallel to geopotential contours. Although the wave amplitude, mean zonal flow and
wavenumbers are similar to those of the Rossby waves depicted in Part I, geostrophic balance
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in geostrophic waves is significantly better than in Rossby waves.
VI. SUMMARIES

The geostrophic waves are an example of kinematic waves discussed by Lighthill and
Whitham (1955), which propagate in one direction only. Unlike the classical mechanic waves,
their propagation mechanism depends on horizontal advection of physical quantities towards
a special direction. The advection is generally related to nonlinear processes. When the pro-
duced perturbation amplitudes are relatively small, the wave—like periodic motions may be
described approximately by linear equations.

11" the effects of the Earth’ s sphericity and atmospheric thermal structure are ignored, the
geostrophic waves will become Rossby waves on a f—plane. Since the propagation of inertial
molions is always to the west in a stationary medium, the geostrophic waves propagate west-
ward relative to the mean zonal flow. Due to the Earth’ s sphericity, the phase speed decreases
poleward in the mean westerlies at high latitudes. The propagation is slowed down by in-
creasing baroclinity. This is a well known fact observed in the initial stage of baroclinic
cyclogenesis. Since the vertical oscillation in geostrophic waves is affected by thermal
stratification of the atmosphere, the wave frequency and phase speed depend on static stabili-
ty of the atmosphere. This effect produced by thermal structure will not present in a flat at-
mosphere, bacause air parcels in geostrophic waves move on potential temperature surfaces in
this atmosphere.

The geostrophic wave solutions are derived from geostrophic perturbation equalions.
Comparing the geostrophic perturbation equations with the perturbation equations used for
Rossby waves, we find that the improvement in geostrophic property of geostrophic waves is
due to application of the geostrophic perturbation equation

# =2
ey
It is important to noie that although this equation is obtained by using the small-oscillation
approximation (McHall, 1991a), the equation does not necessarily depend on this approxima-
tion, and may be derived more generally by scale analysis. Without uwsing the
small-oscillation approximation, we have u'~ ¥". Applying the previous typical scales to-
gether with

Vald® m/s,  ~10° s, Ax~10° m,

we find that the largest terms of zonal acceleration is one order smaller than the two terms in
the previous equation. Usually, the zonal perturbation velocity is comparable with the
meridional perturbation velocity in jet areas, so that the small-oscillation approximation is
not available there. However, the geostrophic perturbation equation is still applicable for the
perturbations in the arecas. Thus, as proved by observations, the perturbations in jet areas are
also in a good geostrophic balance.

The geostrophic waves may become stationary or propagate easlward in a mean
westerly, if the wavelength equals or exceeds the stationary wavelength. Unlike the classical
Rossby waves, the existence of stationary waves depends on baroclinity also. The stationary
wavelength decreases at high latitudes and in the regions of high baroclinity. The stationary
geostrophic waves cannot exist in a mean easterly or a weak baroclinic flow, but may exist in
strong westerly flows.

In deriving the geostrophic wave solutions we did not vse boundary conditions. These
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free geostrophic waves are also trapped by the mean easterlies. But unlike the forced Rossby
waves described by Charney and Drazin {1961), the geostrophic waves are not trapped by a
strong westerly. The existence of planetary scale waves in a strong westerly may be proved by
observational analyses. At the earlier time, the rocket grenade data (Nordberg et al., 1965)
and meteor wind data (Newell and Dickinson, 1967) indicate the presence of planetary eddies
at least up to the mesopause. Since the time when satellite data are available, several planetary
wave patierns in the middle atmosphere have been recognized, for example, the 5-day waves
(Rodgers, 1976), 4-day waves (Venne and Stanford, 1979), 2-day waves (Rodgers and Prata,
1981) and 16-day waves {(Hiroota and Hirota, 1985). It is not sure whether the present
geostrophic wave model may be applied to study these waves. However, an attempt to explain
the 4—day waves in the upper stratosphere has been made already (McHall, 1992b).
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