Vol.10 No.2 Advances in Atmospheric Sciences May 1993

Modelling of Indian Monsoon Rainfall Series by
Univariate Box—Jenkins Type of Models”

5.0 Dahale and 5.V .Singh

Indian Institute of Tropical Meteoralogy, Pune-411008, India
Received January 22, 1992; revised June 4, 1992

ABSTRACT

The time domain approuach, i.e. Autoregressive {AR) processes. of time series analysis is applied to the monsoen
rainfall series of Indix and its iwo major regions. viz. North-West India and Central India. Since the original time se
ries shows no modelable structure due to the presence of high interannual variability, a 3—point cunning filter is ap-
plied before exploring and fitting approptiate stochastic models. Out of several parsimonious models fitted, AR(3) is
found 1o be most svitable. The usefuiness of this fitted model is validied on an independent datum of 1% years and
some skill has been noted. These models therefore can be used for low skill higher lead time forecasts of monsaon.
Further the forecasts produced through such models can be combined with other forecasts to increase the skill of

monsoon forecasts.
I. INTRODUCTION

The Indian monsoon rainfall shows large variability with proportionate impact on lo-
dian economy. This variability consists of two components. viz. (i) The well recognized
interannual variability, which is the major contributor towards the total variability of Indian
monsoon and (i1} The more subtle longer period epochal variability with periods of about
60—70 vears {Pant et al., 1988}. Because ol its larger contribution, the interannual variability
has been extensively studied and methods of forecasting developed by the researchers in the
past. Recently Gowariker et al. (1989) (Sce also Thapliyal, 1990) have used 15 global / re-
gional parameters to predict Indian monsoon. These studies are based on physical linkage be-
tween the predictors and the predictand (viz. Indian monsoon). However, as noted by
Normand {1953), the Indian monsoon rainfall has its connection with posterior events rather
than its earlier events. Therefore, it stands out as an active, not as a passive feature of global
climate system more effective as forecasting tool than as an event to be forecasted. For exam-
ple. Elliet and Angell (1987) have suggested that the Southern Oscillation Index (SOI) and
Sea Surface Temperature (SST) in eastern equatorial Pacific ¢an be anticipated by Indian
Monscon. Large inlerannual changes in the release of energy over India and adjacent regions
could well alfect subsequent circulation suggesting that the monsoon process may be physical-
Iy linked with itself through feedback mechanism; such feedback process may control the evo-
lutionary process of many dynamic series. The autocoherence indicating the intrinsic
predictability has been examined for many climatic elements like Palmer Drought Index
{(Katz and Skaggs. 1981), Sunspots, Baltic ice and zonal circulation (Jolliffe, 1983), Rainfall
(Yao, 1983), Southern Oscillation (Chu and Katz, 1985}, SST (Brown and Flueck, 1987) and

(T Part of this study is published in LRF Report No.14, Programme on Long-Range Forecasting Re-
search, WMO / TD No.395 (1991), pp. 67-72.
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area Indian rainfall (Thapliyal, 1990). The memory of about a decade in monsoon rainfall has
been indicated by Thapliyal (1986). The interannual variability of monsoon rainfall has been
modelled as ARIMA as well as Ex-ARIMA process by Thapliyal (1982, 1986). However, the
autocorrelation function of all India monsoon time series exhibits no structure. [t practically
behaves like white noise or random process except that a barely significant autocorrelation at
lag 14 is noted. Therefore it cannot be modelld by the ARIMA (Box—Jenkins type) class of
models with any fruitful result. We however feel that the smoothed rainfall series representing
longer period variability can be modelled by this class of models. For separating the long pe-
riod cycle from the interannual variability, we use 3—term running average of the rainfall se-
ries.

In Section Il we describe the data used. The relevant Univariate Box—Jenkins (UBJ)
methodology is introduced in brief in Section Il and the Kresults are preseted in Section
IV . Finally the results are discussed and broad conclusions brought out in Section V.

. DATA

The monsoon rainfall data of whole India (henceflorth referred to as India) have been
taken from Parthasarathy et al. (1990) for the period 1871-1989. The data for North West
(N. W.) India and central India have been computed from data of meteorological
subdivisions published by Parthasarathy et al. (1987) for the period 1871-1984. The data of
these regions have been updated till 1987 through personal communication with Dr. B.
Parthasarathy. Area of study and sample statistics based on 1871-1970 of these data are
shown in Figure 1.

For examining the effect of smoothening on the original time series, the raw Indian mon-
soon rainfall series is smoothed by 3—, 5-, 7—, 9—, 11— and [3-point running mean filters.
Smoothening by these filters retains 28%, 18%, 13%, 11%, 9%, and 7% of the original vari-
ance respectively. We use here 3—point runing mean values for modelling as it retains

substantive (28% ) amount of variance of the original time series. This filter eliminates the
-
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Fig.1. Map of India and its two major regions considered for stochastic modelling of monsoon

rainfall.
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influence of short period processes like stratospheric QBO, but retains the longer period cy-
cles like Southern Oscillation, Sunspots etc., intended to be modelled.

iIl. METHODQLOGY IN BRIEF
1. Univariate Box—Jenkins Approach

The parametric time series model building constitutes an attempt to construct from a
given set of data the underlying stochastic process that might have generated the realization.
A general class of linear process is denoted by ARIMA (p, 4, ¢, P, D, Q, 5), where the small
letters p, ¢ refer to autoregressive and moving average paramelers, 4 being the order of dif-
ferencing for the non—seasonal component of the process whereas capitals refer to corre-
sponding parameters / operations to the seasonal component, 5 is a2 measure of seasonality.
One is generally interested to find the class of parsimonious mode! which describes given ob-
servations satisfactorily. However, before building appropriate model the basic conditions of
normality and stationarity should be satisfied. As we consider only the monsoon, the question
of seasonality does not come into picture here. Also instead of differencing we have used some
smoothening to focus on certain desired aspects of the series. Therefore, the present descrip-
tion and the approach will generally be limited to ARMA (p, ¢) class of models.

2. Mode!l Building

Let Z, be aseries of some stochastic variable z, available at equally spaced intervals of
time. For non-zero mean (§), an autoregressive moving average process is defined as:

P L
zn=#+E fpﬂzx—j_#)+ar_—tzlekar—k s
i1 -
where ¢, are p autoregressive and @, ¢ moving average parameters and a, ~ N(0, ola)
are normal random shocks or innovations. 4 18 4 parameter that describes the level of pro-
cess about which it fluctuates.

Box-Jenkins (1976) three stage strategy consisting of iterative cycle of identification, es-
timation and diagnostic checking (zlso see Pankratz, 1983) is followed in this study. We pro-
ceed on our discussions from final models identified. At the estimation and diagnostic stages
the parameters are tested for thier quality such as statistical significance, closeness of fit
[RMSE and Theil’'s I/ (Theil, 1966)] and intercorrelations (yielding joint sampling distribu-
tions of coefficients). Stationarity of process is checked through the admissibility of
parameters.

3. Diagnostic Checking

At this stage the identified models are tested for adequacy by analyzing residuals which
should resemble white noise. Two tests described in the following paragraphs are used.
a. Ljung—Box test

e =n(n+2)}:(n—k)_’?i(a) )
k=1
where 7, (@) are autocorrelations of the residuals. This statistic is preferred to Box—Pierce 0
since ils sampling distribution more nearly approximates chi—squared when sample size is
moderate (Pankratz, 1983).
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b. Theil's test

Theil’s (Theil. 1966) U-statistic is another measure of association between observed and
modelled series. It compares how values (in sequence) in modelled series are changing in the
light of change in the successive observed values. The smaller the value of {/, the better the
model. U is close to zero for most appropriate model.

4. Model Validation

The diagnostic tests carried out during the model building stage are not adequate to
check the sufficiency of a stochastic model. The real test of a model lies in its performance in
forecasting on new data. It is therefore generally advisable to test {or cross—validate) the
model on an independent sample of reasonable size. Large number of simple statistics like
Root Mean Square error, mean absolute error or correlation coefficient have been suggested
and used for this purpose. Another commonly used score is the Heidke Skill Score (H. 8. 8.)
which compares the skill scores of a forecast procedure against a naive forecast method, viz.,
climatology, random or persistence.

For computation of this score, the forecast and observed values of the variable are
categorized in few classes (generally 3 for rainfall, viz. excess, normal and deficient) and con-
tingency tables prepared. The skilil scores are then computed by using the following formula

C—E
S8 = T—F °
where € is the correct number of forecasts, E is the correct number of forecasts expected by
naive method and 7=Total number of forecasts. In the present study the normal values
{midd!e class) are assumed to lie in the range between mean +0.5¢ and mean —0.5¢ and excess
(deficient) values lie above (below) the upper {lower) limit of normal (s = standard deviation).
The §5 is zero when the numbers of correct forecasts produced by the method under test are
equal Lo those expected to be correct by the naive method,

IV, APPLICATION TO MONSOON RAINFALL SERIES

The monsoon rainfall series are known to be homogeneous, Gaussion distributed and
persistence free. Seasonalily is not relevant here because we consider only particular season
rainfall series. To remove the non—stationarity of trend type from the original data, Box and
Jenkins {1976) suggested the repeated differencing and then fitting of the ARMA models to
the differenced series. However, for the series of physical sciences like meteorology this opera-
tion is inapropriate (Katz and Skaggs, 1981).

As an initial step, for checking the stationarity, we plot the time series for visual inspec-
tion (Fig.2). Cramer’s and Bartlett's Tests (WMOQ, 1971) are then applied for checking the
constancy of the first 2 moments over the variable periods. Samples of size 50 are
progressively selected from the time series and tested for the stability of mean and variance.
Auto—correlogrants and the Kendall’s 1 (Kendall, 1966) are also examined. After these tests, a
latest stationary period of 1919—1968 is selected for model building such that an independent
sample of moderate size is available for validation. Certain sample statistics alongwith Q—sta-
tistics of three rainfall series for this stationary epoch are given in Table 1.

Highly significant values of*Q” indicate that the null hypothesis of random model should
be rejected. Some ARMA model is expected to fit the series.
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Fig.3. Sample ACF & PACF for 3-point smoothed series of India as a whole based on stationary
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The ACF and the PACF's for the all India rainfall series are presented in Fig.3. In gener-
al, all time series show significant lag-1 autocorrelations being 0.74, 0.76 and 0.75
respectively for whole India, NW India and Central India series. The general patiern of varia-
tion of ACF and PACF suggests that a low order model like AR{(2), AR(3), MA(2) or
ARMA (1.1) can represent the underlying process satisfactorily. The ACF is like a damped
sine wave and the PACF cuts off for lag 3 indicating that AR{3} is the appropriate process.
Akaike's FPE’s (Fig.4) support this quantitatively,

Table 1. Mean, Variance, C.F. and Box-Pierce 0 Statistic for Stationary Epoch 1919-1968

Region Mean Variance CHA(%) @ with

cm cm? dr.=10
India B5.6 19.85 5.2 381%
MN.W.lndia 495 34.44 119 62.3% =
Central 87.5 55.04 8.5 434« =
India

# » Significant at i %elevel.

Therefore AR(3) model is fitted 1o all time series. Initial estimates of AR(3) are obtained
by Yule—-Walker method which are further refined by Marquardt's algorithm (Pankratz,
1983) to obtain sufficient estimates. The estinmted parameters, innovation variance and vari-
ance explained etc. are given in Table 2.

Table 2. Model Parameters, Variance Explained (V.E.) and Innovation Variance for India, N.W. India and Central

India
Estimates Mean Level Innovation
Region Initial sufficient ¢ Cms. varianoe
o’a Sq.cm
India ¢ 1=0.714 0.8289
@ 2=0.194 0.2193 B5.7 1.73
¢ 3=-0.385 -6.4998
V.E. 55% 61%
N.W.India @ [=0.737 08432
p 2=0.266 0.3365 494 10.15
¢ 3=~0.475 —-0.6121
V.E. 62% T0%
Central @ 1=0.723 0.3061
India @ 2=0.244 Q2782 875 20.83
p 3=-039 —0.4732
VE. 58%, 62%

The model equations can be written as;
For India,
Z,=857+08289(Z, | —857+0.2193(Z,_, — 85.7)— DA998(Z,_, —85.7)
+ai, ai~N 0,77,
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For MN.W. India,
Z,=49.4+0.8432(Z, | —49.4)+0.3365(Z, _, —49.4)— 0.6121(Z,_; ~ 49.4)
+ai | ai~N (0,10.1} .
For Central India,
Z,=87.5+0.8061(Z, , —87.5)+0.2782(Z,_, — 87.5)—0.4732Z,_, — 87.5)
+ai ai~N (0,20.3) .
To check how well the models it sample for all regions, the residuals or innovations are

calculated as a(¢) = Z{r) — Z(¢) and Ljung—Box @' (Pankratz, 1983) is computed. Corre-
lation coefficient, Theil's & and RMSE are also evaluated. Results are shown in Table 3.

Table 3. Goodness of Fit Statistics for India, N.W. India and Central India

. Ljung-Box Q" Corr.Cosff, between . R.M.S. Error

Region Theil’s U/
df=7 observed and modelled (Cms)

sndia 7.20 0.82 0.76
N India 5.43 0.86 0-63 i
Central K X 3 2.82

. 1144 0.33 0.77 3196
India

All @0 ° stalistics are insignificant which implies that the mode! is adequate, U <1 indi-

cates that the model resembles the realization betler than exponentially weighted moving av-
erage model. For checking the quality of parameters, intercorrelations are compuied.

Table 4. Intercorrelations between AR{3) Parameters (Including Mean) for 3 Regions of India

India NW. India Central India
@, [ ®; mean @, [N o5 mean @ @, mean
@ 1.00 -.69 .19 A2 1.00 =71 26 Al 1.00 -.69 A8 14
@y 1.00 -4 -09 1.0 - 69 =1t 1.00 -.65 -.13
v, 1.00 -.06 1.00 - 1.00 -.01
mean 1.00 1.00 1.00

The intercorrelations are poor, (Table 4) implying that the parameters are independent of
this particular realization. We can therefore, use this model for extrapolating future values.
One should suspect that the estimates are somewhat unstable when absolute correlation
coefficient between any two (including mean) estimated ARMA parameters is >0.9
{Pankratz, 1983). In our case the intercorrelations are well below 0.9, so the estimated model
is satisfactory. The parameters satisfy the condition of stationarity and the parameters ¢,
and ¢, are significant.

We have used this fitted model to make forecasts during an independent period of 18
years (1970-1987). One step ahead forecast and their 95% confidence intervals are shown in
Figure 5. Actual forecasis computed from smoothed series are tabulated in Table 3. The
Heidke skill scores for 3 categories forecasts are given in the bottom of the same Table.
Bracketed scores are for smoothed series.
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V. DISCUSSION AND CONCLUSION

The autoregressive model building procedures are employed to characterize smoothed
rainfall series of India and its two major regions. Selected samples are stationary and thus ap-
propriate for UBJ analysis. The AR(3) model is selected on the basis of ACF, PACF patterns,
Akaikes FPE criterion and minimum residual variance. The mode! adequacy is tested through
diagnostic checking. Further the quality of model like closeness of fit, statistical significance
of parameters, intercorrelations and stationarity of modelled process [AR(3)] is tested. Model
potential is evaluated on independent test data set.

The original rainfall time series does not show significant autocorrelation or partial
autocorrelation at any lag, so it lacks the significant structure and hence cannot be fruitfully
modelled by AR class of models. However, after smoothing some significant structure
emerges which is modelled here and used for linear extrapolation. Instead of assuming
stationarity or removing non—stationarity by nonseasonal differencing, we have selected a
stationary part of the 3—point moving averaged smoothed series for identifying a proper
stochastic process. It is certainly true that climatological series like Indian rainfall cannct be
explained entirely by its own past values without considering any effect from other meteoro-
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logical parameters. However, interannual variation to certain extent can be accounted for by
the simple class of univariate ARMA models. AR(3) model is suggested to be the most ap-
propriate model in the above analysis. Each monsoon event is final output of various
non-—linear interactions between regional and planetary scale parameters and generally most
recent information could be more useful for its prediction. Many researchers (Parthasarathy
et al.. 1988; Gowariker et al., 1989; Thapliyal, 1990) have developed forecasting methods
based on multiple regression with different parameters. Generally the lead time of such fore-
casts is a few months, The present method eventhough explains smail variance of the original
series, it provides the forecast with lead time of nearly a year. Univariate linear extrapolation
method has limited skill as it explains only the feedback mechanism part of the monsoon pro-
cess on regional scale. However the skiil can be improved either by combining with some in-
dependent statistical schemes explaining teleconnections with Indian monsoon or considering
non—linear extrapolation methods like Threshold Auto Regression (TAR) or multivariate
time series models etc.. It is hoped that these forecasts can be considered along with the fore-
casts prepared by other methods, for improving the lead time and skills of forecasts.

Table 5. Actual and Forccasted Values (Cms.) for Independent Test Data Period: 1970-1987 and Heidke Skill Score

Year India N.W.India Central India
actual  forecast actual forecast actual forecast
1970 939 96.3 53.6 5819 1044 1008
1971 88.6 84.5 59.6 40.8 848 il.e
1972 63.3 86.8 3.4 43.6 613 90.5
1973 1.2 84.7 62.3 54.7 96.2 nid
1974 74.7 R4.6 40.1 52.3 63.8 78.6
1973 96.0 216 71.3 40.0 98.7 69.3
1976 85.5 %9.9 62.4 48.7 88.3 956
1977 86.1 85.2 63.4 56.1 20.4 84.7
1978 9.8 9.5 65.8 56.2 92.4 343
1979 0.8 87.5 344 56.2 73.2 96.4
1980 83.3 844 46.4 45.4 93.5 86.6
1981 85.2 87.2 41.4 44.1 B7.2 87.3
1982 73.5 75.2 387 276 76.0 77.0
1983 955 90.8 38.2 41.0 1075 538
1984 835 90.1 482 512 74.1 BE.1
1985 78.7 TR.5 44.8 43.0 T1.6 813
1986 4.7 95.6 ‘ 39.5 619 723 104.3
1987 63.8 889 232 52.8 62.9 822
Heidke
skill 1.345 0.029 0.327
score (0.486) (0.408) {0.284)

The following are the main conclusions of the present study.

1) The monsoon rainfall series smoothed by 3—point running mean for India, N.W. India
and Central India have a stationary period of 1919-1968.

2) 3—point smoothed series of India and its tow major regions are adequately represented
by AR(3) process.

3) Variance explained by AR{3) models of 3—point smocthed series are satisfactory, be-
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ing 61% for India, 70% for N.W, India and 62% for Central India.

4) The AR(3} model could be used as a first guess to forecast calegoriwise, viz. Excess,
normal and deficient rainfall with nearly one year lead time.

This paper has examined the monsoon rainfall time series for the period 1871-1989. Re-
cently some authors have constructed the all India rainfall series by using limited stations data
as far back as 1813. It remains to be examined if similar characteristics as reported in this
study hold good for the rainfall series of the last century.

. The authors wish to express their sincere thanks to the Director, 1.1 T.M. for facilities provided and to Dr. S.8.
Singh for encouragement. Thanks are also due to Dr. B. Parthasarathy, Dr. Nityanand Singh and Anonymous refer-
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