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ABSTRACT

In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change
and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely
square—conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test
with 4—wave Rossby—Haurwitz waves on them and an application of them on the monihiy mean current the of South
China Sea are carried out, from which, it is found that ot only do the new schemes have high harmony and approxi-
mate precision but also can the time step of the schemes be lengthened and can much computational time be saved.

Therefore, they are worth generalizing and applying.
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1. INTRODUCTION

Numerical weather forecast and numerical simulations for climate change and ocean cur-
rent belong to problems of low—speed revolving fluid dynamics, which need long—time nu-
merical integrations. To meet their special character, implicit and explicit schemes completely
keeping the square conservatism have been developed successively and many successful re-
sults obtained. In real work, however, it is found that there might be computational chaos
sometimes in some parts of the integration region, with which 2 long—time integration might
be broken off, although the scheme used is compleiely square— conservative and the nonlinear
computational instability can be avoided. Smoothing and filtering are not good ways to solve
the problem because with them the complete square conservatism of the scheme may be bro-
ken up to some extent, although the computational results may be improved. Therefore, fur-
ther analyses and tesis on the aforesaid schemes are carried out and the direct relation be-
tween the local computational chaos and the approximate precision of the schemes is found.
Usually the time—direction precision of traditional difference schemes which are completely
square—-conservatwe two—order. Can a difference scheme not only having a higher precision
in the time direction bui also completley keeping the square conservatism be construeted? The
answer is affirmative. In this paper, we lry to analyze and discuss this problem in detail. Also,
the new schemes constructed in this paper are tested numerically and the results are satisfac-
tory, which indicate a bright future for the further developments and applications of them.
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I, COMPLETELY SQUARE—CONSERVATIVE DIFFERENCE SCHEMES IN EXPLICIT WAY

A time evolutionary equation in operator form

%F + LF=0,
§ ()

limF=F%%) ,
Oall]

is considered, where L = L{F.x./} is a nonlinear or a linear operator, F= F(x,t) is the
undetermined function.

It is supposed that the two—dimensional coordinate space {x, ¢} is scattered into a grid
space and the discrete function is F{jh,nt)=(F)], of which the inner product and the norm
are defined in the similar way of Zeng et al. (1981).

The discrete function (F); *! can be expanded into the Taylor's series

(F =) + z(‘aF) +:—f!~l— (‘EZ—F)" + e, 2)

?;- g 6{2 :
and the finite terms of Eq.(2) are selected to form the following equation

T () {5 ®

in which £ is an undetermined parameter. The two equalities

oF L_F e°F _ _aLF

7 R T

@

which can be derived from Eq.(1) easily, are substituted for (3), and the following equation
P -F — eLFY
olb S S 1 e YEL
- (LF); —et| 5, , ()

is obtained. If (Ef’)f is replaced by the corresponding difference form (LF);, the difference
scheme :

F{zi—l — A
b= P -, r(‘s—j;‘,f) ®

can be constructed based on Eq.(5). Furthermore, Eq.(6} can be rewritten into a general form

: FJ.1+] "‘Fﬂ
—-"—T—” = —(LF); — ¢, 1(BF)] )]

or into an equal and simple form

IR
= - 4Fy (8)

T
where (AF); =(LF)/ +¢,to(BF); and B is a dissipative operator.
The following theorems proved by Ji et al. (1991) and Wang et al. (1990} show how to
construct a completely square—conservative difference scheme in explicit way.
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Theorem 1: If the expression:
tld, F*1? -4, F . F)=0 ©

is true, Scheme (8) is a completely square—conservative difference scheme.
Theorem 2: If L, is an g—symmetrical operator, B is a positive definite operator,

(8,FY <0(l) and 2K 3% < 1, then Scheme (7) is a completely square—conservative differ-

ence scherme in explicit way with a constant time step when

wmk /(15 J0-5) - () ] o

where
K =L Pl s, P Fy,
K,=(B,F',L ,F')h/(B,F",F"), (i
K =g, 7|, llas @ m P

IIl. THE HARMONICUS DISSIPATIVE QPERATORS AND THE PRECISION OF A
DIFFERENCE SCHEME

Various difference schemes compatible with Eq.(1) can be established if more terms of
Series (2} are chosen. The operator B relative to each of the schemes is called a harmonious
dissipative operator. B is called one—order harmonicus dissipative operator if determined by

2 "
(BFY = —(f}:f) +00@) . (12)

Generally, B is called an m—order harmonious dissipative operator if it satisfies

. leZF ‘L’C.IBF _L,m—l am*lF " .
(BF) ——2[21 T Tt e | TOT) (13)

From the definition above, the following theorems can be easily testified.

-

Theorem 3: Scheme (7) constructed according to Theorem 2 is of two—order precision in the
time direction when 8 is a one—order harmonious dissipative operator, i.e..

2 "
(BF) = —(i—f} +o0) . (14)

Theorem 4: Scheme (7} derived from Theorem 2 is of three—order precision in the time direc-
tion when B is a two—order harmonious dissipative operator, i.e.,

b 3
(BFY" = ~('a F 18 F) + o) . (5)

6[2 3 5!3

Corollary I: If B is defined by the following expression:
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. #FY _{eLF\ _LFPt —LF" F  BFY s
B == — = — ¥y = — =
(BF) (aﬁ-) ( 2 ) . Py +25:3 +0(z), (16)

then Scheme (7) is of two—order precision in the time direction and B is a one—order harmo-

nious dissipative operator.

Corollary 2: If B is determined by

a2 n G - -1 2 3 "
(BFY' ~ —(” f) *(%’S) wLELE —(a F—Ea—F) +o@h, (17

dt* T gr 248

then Scheme (7) is of two—order precision in the lime direction and B is a one—order harmo-
nious dissipative operator.
Corollary 3: If B issettobe

o (@FY _feLFY _LF' —LF! FFEY 2

(BP'.) ~ (BLE ) ""( 21 ~ 2 8[2 +0(f ) i (18)
then Scheme (7) is of two—order precision in the time direction and 8 is a one—order harmo-
nious dissipative operator.

Corollary 4: Scheme (7) is of three—order precision in the time direction and 8 is a two—or-
der harmonious dissipative operator when it satisfies

o (PN _(LEN _S{LP*' —LF N\ 1{LF —LF"’

R N o G i
CSpFt g L (&F @ FY 2
= = =={ 57 35 ) roe. (19)

It is worth noling that the term LF" "' in the corollaries above is difficult to calculate
directly in real compulations. Therefore, an approximate way to calculate it is adopted here

{F' =F" —1LF"

= * 20
Pt - P . e

2

It is found in real computations that there is little effect on the precision of the scheme and on
the order of harmonious dissip.alion of the operaor B although F** ' isreplaced by F'* '

1V. THE CONSTRUCTION OF HARMONIOUS DISSIPATIVE OPERATOR

In this secton, an effective method, Runge—Kutta method, is cited and generalized to
construct a kind of practical and useful harmonious dissipative operator. The details are
shown in the following theorems and corollaries which can be easily proved.

Theorem 5: The operator 8
(o) - Ry
T

BF = 1))

is a one—order harmonious dissipative operator if

o(F,y=C, R, +C, R, , (22)
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where
R, =—-LF, R,=—L(F+b,1R,) (23)
and the coefficients €|, C, and b,; obey
1

Ci+Cy=1, Ciby=75 . (24)

Corollary 1: In Theorem 5, if set C, =0, C; =1 and by, =%, then the operator B

satisfies:

pr=ALF T_L \ F'zF—%rLF, 25

and is called a centred Euler operator.

Corollary 2: In Theorem 5, if set C, =%, C, =% and b,, =1, then the operator B salis-
fies
pr=L=LD  Fopoar. (26)

and is called an improved Euler operator.

Theorem 6: If set

p(F)=C, R, +C, R, + C;Ry , 27)
where

R, =-LF,

Ry = —L{(F+bytR), {28)

Ry= —L(F+bytR +by1R,) ,
and the coefficients C,, C,, C; and b,,, by, by satisfy
C,+C, +C5=1,

1
Cabyy +Cilby +b32)=§ ,
1 {29)
CEbil + Cilby ‘*"532)2 =§ »

1
Cibybyp =g »

then the operator 8 defined by (21) is a two—order harmonious dissipative operator.

. 3 1
Corollary 3: In Theorem 6, if set () =i, C, =0, C; =3 by, =3 by =0,
then the operator B satisfies

L(F+ %ml)— LF
. (30)

T L]

and by, =%,

BF=

b [t
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where

R2=~L(F—%1LF) , (1)

and is called a Heun operator.

2 1

Corollary 4: In Theorem 6, if set C, =é, C. =3" C, =5 by =%, by =—1, and
#, =2, then the operator B satisfies
4R, + R, - 5R,
BF= ———_—— (32)
37
where
R = —LF,
Ry = —LF+37R,) (33)
Ry=—L(F—1R, +21R;) ,
and is called a Kutta operator.
Theorem 7: if set
@FD=C R +C, R, +C3R, +C, R, (34)
where
R,=-LF,
R,=—L(F+b,1R)), (35)

R, = —L(F+by, 1R, +by1R,) ,
Ry= —L{F+bytR, +htRy +hy1R;)

and the coefficients C,, C,, C,, C, and by, by, by, by, by, by salisfy

C,+C,+C +C, =1,

Cya, +Cya, +Cya, =% s
Czai +C3a'132 +C4ai =% .
1
C2a§+C3a§+C4ai=§ ,
1 (36)
Cibypay + Cylbpa, +543ﬂ3]=g .
1
Ciazbya, +Cuaylbya; +b43‘13]=§ ,

i
C'Jbua% +C4[bua§ +b43a‘;']=§ .
1

ﬂ [}

Cobpnbpby =




™
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and
a; =by
ay=by +by , (37
@y =by thy thy

then the operator 8 defined by (21) is a three—order harmonious dissipative operator.

Corollary 5: In Theorem 7, if set C, =-é-. C3=%, C3=%, Cd':%, by =%, by =0,
by =%, b, =0, by =0 and b, =1, then aclassical Runge—Kutta operator which sat-
isfies:

XR;, +R,)+ R, —5R

BF= — ( 2 3) 4 1 , (38)
3

where

R,=—-LF

R, = —-L(F+%1R,) y
] E (39
Ry =~ L(F +57R,)

R, = —L(F+1R,) ,
can be obtained.

Corollary 6: In Theorem 7, if set

1 3 3 1
C,—g. Lo =‘8‘a Cs__g’ Cd.:g
1 1
by:g, bn”f:p by =1 by=L by=-1 byg=1,

then another three—order harmonious dissipative operator 8 which satisfies
3R, +R,)+R,—TR,
Bf=-— 47 ’

A

(40)

where

=
i

=—LF,

R, = —L(F+%1R,) ,
) (41)

= —L(F—%rR[ +1Ry)
= —L{F+1R, —1R; +1R;),

o
Y -t
! [

can be obtained.
V. TESTS AND APPLICATIONS

In Section 4, ihree species of harmonious dissipative operators with different order are
constructed by using the Runge—Kutta method. According to the definition of the harmo-
nious dissipative operatore, it is commonly known that, the higher the order of harmony of
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Fig. 1.3 R—~H waves (100 days).

Fig. 1.4 R~H waves (120 days).

Fig.l. The figures for numerical tests on explicit complete square conservative difference schemes

whose time step is constant {with 4—wave Rossby—Haurwitz waves).

operator B is, the higher the time—direction precision of the carresponding difference scheme
is got and the longer the time step can be taken. Therefore, among the harmonious dissipative
operalors consirucled in Section 4, the operator in Theorem 7 has the highest precision in the
time direction and the one in Theorem 5 has the lowest precision.

Table 1. Comparison of the Results of the Four Schemes

Original one—order simplified two—order
implicit scheme explicit scheme explicit scheme explicit scheme
Integration days T30 30 30 30
CPU Time(min) 280 2.60 212 292
| Pl (o # 8) 25,75 25.62 25.64 25.38
Location (I, J) (26, 23) (26, 23) (26, 23) (26, 23)
H,.. (cm) 18.06 17.98 17.99 13.04
Lacation (1. I) (5, 47) (5. 47) (5, 47) (5, 47)
H,. (cm) —41.09 —40.92 —40.94 —41.05
Location (1, J) 47, 4} 47, 4 47, 4) 47, 4)

Note: ¥ is the velocily of the sea currenis, A is the elevation of the sea surface.

he
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Fig.- 2.1 Original implicit scheme ) Fig. 2.2 1—order explicit scheme
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Fig. 2.4 2—order explicit scheme

Fig.2. The figures for the comparison of monthly mean sea currents in January.

However, il is necessary to remark that the computational effect of a harmonious
dissipative operator is hardly influenced by its order of harmony because its space—direction
precision is nol hightened yei, only the time benefits may be affected by the order obviously.
Thus, to increase the space—direction precision of a scheme with a high time—direction preci-
sion {or with a high order harmonious dissipative operator), it may be an important way to

{mprove the computational results.
Numerical tests on harmonious dissipative operators and the corresponding difference
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schemes completely keeping the square conservatism, based on the barotropic shallow water
equation set describing the atmospheric motion in the Northern Hemisphere covered by 80 x
20 grids with 4—wave Rossby—Haurwitz waves, are carried out, and satisfactory results are
obtained (Fig.1). The harmonious dissipative operator used here is of three—order and takes
18 seconds for a one—day integration with a 390—second time step. However, it takes more
time for a one—day integration if a lower order harmonious dissipative operator is vsed, 50
seconds for the ene—order one and 21 seconds for the two—order one.

Moreover, an implicit scheme and three explicit schemes, which are all completely
square—conservative, are used to simulate the monthly mean currents of the South China Sea
in January, respectively, and the computational effects which can be seen from Fig.2 are al-
most the same (Zeng et al.,1989). Additionally, the CPU time that each scheme takes is given
in Table 1, from which, it is easy to know that the explicit schemes have much better lime
benefits than the implicit scheme and the CPU time of the explicit schemes is only 1/ 5 to
1./ 3 of that of the implicit scheme.

The authors are grateful 1o Ms. Li Rongfeng for her kind help.
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