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ABSTRACT

The group velocity used in meteorology in the last 30 years was derived in terms of conservation of wave energy
or crests in wave propagation. The conservation principle is a necessary but not a sufficient condition for deriving the
mathematical form of group velocity, because it cannot specify a unique direction jn which wave energy or crests
propagate. The derived mathematical expression is available only for isotropic waves. Bul for anisotropic waves. the
tradifional group velocity may have no a definite direction, because it varies with rotation of coordinates. For these
reasons. it cannot be considerad as a penera expression of group velocity. A ray defined by using this group velocity
may not be the trajectory of a referance point in an anisoifopic wave train. The more general and precise expression
of group velocity which is applicable for bath isotropic and anisotropic waves and is independent of coordinates will

be derived following the displacement of not only a wave envelope phase but also a wave reference point on the phase,
Key words: Lsotropic group velocity, General group velocity. Oblique group velocity
[. INTRODUCTION

For the wave proup composed of plane waves, group velocity is the velocily at which a
wave envelope propagates. Il the plane waves have phase planes ¢, and similar wavenumber
vectors k= %@, , the mathematical expression of group velocity is given by (Brillouin, 1960,
Panchev, 1985)

. dm _ dw
= lim52 =92 W
R TS
where
- _d
@ et

indicates angular frequency of the waves, and k, called the wavenumber, is the length of
wavenumber vector k. [l is important to note that 8k in the previous expression represents
the difference of wavenumbers between these waves, but not the variation with time or space.
For the wave group produced by plane waves propagating along a constant direction in 2
homogeneous medium, wavenumbers of these waves do not change with time and space,
but 3k==0. So group velocily may still be defined. While, for the waves with phase surfaces

(pj=k'x—m,-! (2)
and the same wavenumber vector, group velocity cannot be defined since dk=0, though the

wave frequency may depend on wavenumber. Analogously, the dw in (1) gives the difference
of wave frequencies between the waves. For the waves possessing phase surfaces
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¢j=kj * X —wl,

group velocity of these waves is always zero since dw=0, even if their frequency depends on
wavenumber and is a function of time and space. In this sense, wave dispersion is a propetty
of wave train itsell, which is independent of medium. Another important point is that for the
plane waves of which the phase planes are not sufficiently large, a classical wave group may
be produced onty if they propagate in the same wave path. For group velocity is a physical
subject. its physical meaning should not be ignored when we deal with it in mathematics,

In a wavenumber space. wavenumber vector is a Cartesian vector given by

— 3 i i —_ 2 2
k=k Kk, +kk +k,k;, k=Jk + &2+ ki,

where k; (f=1.2.3} indicale unit vectors along coordinates k;. According to classical math-
ematics, (1) represents a directional derivative

dw dew dw
c, = —¢08 2, + ——cos a, T 5—Co5 2, 3
L & v Bk, L ok, 2 3

along the direction of k. Here,
kl'
L= — 4
cos & =~ (4

are the direction cosines of the wavenumber vector in a wavenumber space. Uscally, we set
the Cartesian coordinates in a physical space with axes x, towards the directions of k; . so
that the wavenumber vector may be represented equivalently by

K=k %, +h Ry +Ey Ry

where, %; are unil vectors of the Cartesian coordinates in a three dimensional physical space.
In this case, cos , are also the direction cosines of wavenumber vector in the Cartesian
coordinates.

However. the multidimensional group velocity of plane waves used in meteorological
studies was given by

u=YuUs% . U,=§~‘°f. (3)
It gives
v- | S(ey.

Vo ek,

As showed previously. (3) is derived exactly from the classical mathematics. While, we will
find in the next section that the derivation of (5} is not perfect. These two expressions of group
velocities are identical only for isotropic waves as discussed in Section LI1, but are different for
anisotropic waves. Thus, it is necessary to choose {rom one of them the more general one
which is applicable for both isotropic and anisotropic waves. The choice will be made by the
basic fact that group velocity is the phase velocily of wave envelope, which has a specific di-
rection normal to the phase surface and is independent of coordinates,

{I. HISTORICAL REVIEW

Initially. a mathemarical expression of a multidimensional group velocity was repre-
sented by {Landau and Lifshitz, 1959, Bretherton, 1970)
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_Cdw

= {6}
This equation is generally not equivalent to {5). The formula

_{ @ Iij
erak = (5~ g ) )
is only a definition given by some authors {e.g., Milne-Thomson. 1968} and used for writing
mathematical notations conveniently. In addition, there are some other definitions aiso. Ac-
cording to calculus of vectors (Williamson et al., 1968; Baxandall and Liebeck. 1981}

dw 1 dw dm Cry
. oy Yo, £
dk Jk? +ki+k§ ( Yok kz@k:f kﬂ&k; )
= bo Lo o
—c"kl cos o +Bk2 COS oy +5k3 COS 0y,

where k is a unit wavenumber vector. This equation does not represent a vector again. In this
case, the left hand side of (7) is evaluated in terms of the directional derivative in the direction
of wavenumber vector, and is not identical to the right hand side.

In fact, the traditional group velocity (5) used in meteorology was not derived from (6).
The detailed derivation of {5) may be found in the studies of Whitham (1960, 1961, 1974b)
and Eckart (1960). The only physical principle which they applied was that group velocity is a
velocity at which wave crests are conserved when waves propagate in a homogeneous
medium. These studies were concentrated mostly on isotropic waves, of which their frequency
and phase speed are independent of propagation direction.

For multidimensional waves, that wave crests propagate conservatively at a velocity is
not a sufficient reason for us to regard this velocity as group velocity, because this velocity is
not unique for the same waves. In physics, group velocity is the velocity at which a constant
phase surface of wave envelope moves. Thus, group velocity is in the ditection normal to the
phase surfaces, and is paraliel to wavenumber vector. This group velocity is illusirated by the
vector ¢, in Fig. 1, which shows the propagation of a wave envelope of plane waves. Apart
from this group velocity c,, the phase displacement may also be described by some other ve-
locities in the directions different from the group velocity, such as the velocity U shown in
Fig. 1. If the scale of wave phase is much greater than the wavelength, it may be considered
that wave energy is also transported by the velocity U along its direction. Following the ve-
locity U, wave crests are also conserved. In derivalion of the traditional group velocity (5),
only the movement of wave crest was considered. It has not been proved that (5) represents
the velocity in the direction of wave group propagation. Thus, it is possible that the velocity
(5) is the velocity U but not the ¢, in Fig, 1. For example, Whitham (1960) showed that his
group velocity was generally not in the direction of wave propagation. This will be discussed
further in Section V.

If group velocity is considered as the phase velocity of a wave envelope in the direction of
wave propagalion, the discussion may be understood more easily. It is well known that phase
speed of plane waves in the direction of wavenumber vector is given by

=7,

k
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which is not a Cartesian vector, because

¢; =-— #Fc Cos 7,

?‘\‘le

;
and
e % +c§+c§.

For a wave group composed of two plane waves with wavenumber vectors k, and k, and
angular frequencies w, and w, respectively, phase surface of the wave envelope may be
represented by

@, = Ak x| + AL, x, T Ak x; — Aot

where

Ak, =k, —k, . Aw =, —w, .

Since phase speeds in different directions represent also the displacement of a wave phase, the
speeds along individual coordinales may be derived from the relation of phase displacement

Ak x, Ak, x, + Ak Xy Aot = Ak x YAk, F Ak x; Aot

by setting x, =x, (j#i). giving

_x,.—x,-u _ Aw
Ui = -1, Ak

Again, Aw and Ak, are the difference of wave frequencies and wavenumbers between dif-
ferent waves respeciively, When Ak; is sufficiently small, it gives the components shown in
(5). As to a single wave, these components are not Cartesian components of the phase velocity
of wave eavelope. However, in some previous studies {e.g., Eckart, 1960), group velocity (3)
was given directly by taking the non—Cartesian components as Cartesian components.

Y

O X

Fig. 1. Propagauon ol the wave envelope of plane waves. A and B indicate 1wo difTerent

reference wave points,
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III. DEPENDENCE ON COORDINATES
1. General Proof

The traditional group velocity (5) may be not in the direction of wave propagation, and
so cannot be chosen uniquely (referring to Fig. 1). It will be difficult to use this velocity for the
study of wave mechanics, because it may vary with rotation of coordinates. Suppose that a
wave group is made by the three dimensional plane waves which possess wave phase

. o=k x thox, thyx, —w, (®)
and propagate in a constant direction; the group velocity calculated from (5) is not in the di-
rection of the wave propagation. Now, we rotate the original Cartesian coordinates, so that
the waves in the new coordinates propagate along x, direction. In this new coordinate
frame, the wave phase may be rewritten as

o=k x, —or )
So, the group velocity evaluated from either {3) or (5} is

ey =-te )
£k

According to (3), the direction of the group velocity in the new coordinates is along the direc-
tion of wave propagation. So the group velocity is changed by coordinate transfer. This de-
pendence of the traditional group velocity on coordinates can be proved generally in the fol-

lowing.
The functional notation of a vector represented in Cartesian coordinates may be changed
if the coordinates are transferred into a non—Cartesian coordinates (Braae, 1968). Thus, the
discussion here is confined to the transform between Cartesian coordinates. If the angles be-

tween original coordinates x, and nmew coordinates x }-' are given by o, , transform of

coordinates are represented by

Xy X
o (=Alx o, {11}
Xy x5

where,
COS ®;, C€OS %;; COS 0y

A ={cos x; cos ay cos oy
COS @3 COS X3 COS By

is an orthogonal matrix. The corresponding transform of wavenumber vector is determined

by .
(ﬁfe_] [ 2o

& &x, ax; e

1 1

e (_ | %% (_ .

e PA g [FA R | 1

“l e ap ks

| fx; | ox; |
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The derivation is referred to Braae (1968). Since

X X
lky dey ky) | %2 |= (k) k) k] )ATA x;
Xy x:

=k xR % HE
AT ot A
where is a transpose matrix of £A, phase surface (8) becomes
=k x| ‘vhkix, tkix; —wi

in the new coordinates.

It has been noted that group velocity may also be defined for the wave group propa-
gating in a constant direction. For this wave group, it is always possible to choose a new
coordinate system with x| —axis towards the propagation direction. In this case. «; in the
first column of A are the direction angles of the wavenumber vector in the original
coordinates. Thus,

kl
iy COS &3 COS dyy COS Oy 0
= k, |= ]
ky COS 2y, COS %y COS 9y 0
ks
This gives
k ke ki cos 2y
ky [=A | o =] & cos ay
ky 0 k| cos =y,

The geometric meaning of this relationship is obvious.
After this rotation, phase plane {8) becomes (9), and the wave frequency is rewritten as

wlky Y= olk k) k() kqtk] L

The traditicnal group velocity (5) gives

- 3
_ tw _ dw . (13)

Now, let us consider firstly the isotropic waves, of which frequency can be representied by
w= w(aj,k). where & =/ ki + k; + k%, and @, are other paramelers. For these waves,

1

L o o _ 20 Y
i;a—k:cos o '—a z 5:"-’,- ) .

=l

So. U' is just the group velocity given by (1), and is unchanged by the coordinate transforin.
However, for anisotropic waves,
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1 3 z
dw [52)]
EECDS xy # ZI (6?'-)

in general. In this case, group velocity represented by the traditional expression may be al-
tered after rotation of coordinates as shown by the example below, and is generally different
from the new group velocity.

2. Example o fRosshy Wave

In the coordinates with x—axis eastward and y-axis northward, the classical Rossby
waveon a fi-plane is dominated by the conservation equation of absolute vorticity

[y )V; ; oy’

R +p+%L =g,

4t ax vi+p ax (4
where, ¥4 and § are both constant representing the mean zonal flow of atmosphere and the
meridional variation of horizonwal Coriolis force, respectively. If the horizontal coordinates
are rotated on the horizontal plane by an angle 8, we have

X cos B —sin 2} x°
¥ sin ¢ cos ¥

and
2 ¢
ax [cos g —sin a] éx "
I sin # cos @ [4
ar ay”

Applying this relationships for (14) yields the conservation equation in the new coordinates

f @ & . o ay " "
% +u(8x' cos B*a—’Fsm 6)]‘7 W +’B(6i" cos H—a";:_ sin 6)‘—'0, (16)
where,
DY VAR i
apt ax”
and

Here, u'" is in the direction of positive x* which departs from the eastward direction by the
angle 0, and ¥ isin the direction of positive y*. Eq.(16) is a more general form of abso-
lute vorticity conservation equation, while (14) is an example of §=0. In the following dis-
cussions, the * in the previous equations will be omitted. In this case, x—axis may not point
to the east.

loserting the wave solution

¢=Ae"{k|-"+’fz)’*°’” (17)
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into (16} yields the dispersion relation

= (E{'—Ff—k:){k,cos 0~ kysin 0). (18)

| 2

It gives the classical form

L Pk
&+ k3

w=uk,

in the coordinates with #=0. IL can be proved that the wave frequency is independent of
coordinates.

This Rossby wave is an example of anisotropic waves, because for the same wave phase
speed varies as il propagates lowards different directions. The traditional group velocity and
its components calculated from {18) reads

o T
s 4t P
U= rp— - )+ (k cos 0 — k,sin B | 19)
J ( &+ k3 ) (kf+.k§)'1 : : (
and
_ k cos 0—k,sin
(.';1 = (H Y ﬁ 2 )COS 0+2ﬁk|4|-"__:‘“1—_ (20}
K+ k2 (k7 +is)”
B k 1 —k,sin &
v, = (H—Tﬁ_v)sm 0+ 2k, 20— @
: K2+ k] k] T3y

respectively. This velocity U intersects with the path of carrier wave when &, is different
from zero.

Obviously, {16} also dominates the Rossby waves which propagate in a constant direc-
tion. Although wavenumbers of the carrier wave do not vary with time and space, group ve-
locity may still be defined when the wavenumbers of individual single waves are different. In
this case. the traditional group velocity and its components provided by (19)-{21} are obvi-
ously wrong, since 1he wave group cannot propagate in a direction different from wave prop-
agation.

To give an exact proof, we select the new coordinates with x* —axis in the direction of
wave propagation. In this case. (12} gives

ki l:cos % —sin 1:’T|:k1 ]_ JEk+ 4k ]

ks 0

*

it sin @ ¢os %

where
k, ks

CO§ ¥ T F=———,  §in X= .
JET &3 VKT +k;

It tells that the wavenumber vector becomes one dimensional, but its length is unchanged af-
ter this coordinate transform. The phase surface of Rossby waves is then replaced by (9). and

the anisotropic dispersion relation is rewritten by inserting £, =0 into (18), as
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w= (ﬂk]' —ki‘)cos N . (22)
1

where, /7 = (+2 is a constant angle between the new x~ —axis and the eastward direction.
The traditional group velocity in the new coordinates gives now

U= 5(13 = (r7+ 'q )cos 0. &’ =k,'? =kl +ED
ck | k-

It may be obtained also by using {(13) for (18). This velocity is always in the direction of wave

propagation. its magnitude is different from the U7 given in (19). Therefore, the velocity rep-

resented by (5} is changed by coordinate transform.

As the velocity {3) may vary with rotation of coordinates, it cannot give a general expres-
sion of group velocity. One could argue that the traditional group velocity may be applied in
meteorology for the study of atmospheric perturbations such as the planetary wave propaga-
tion in the slowly varying environments (Hoskins and Karoly, 1981; Karoly and Hoskins,
1982: Wallace and Gutzler. 1981; Dole, 1983). 1t is true only for isotropic waves. However,
most of the atmospheric waves, such as Rossby waves, are anisotropic waves. We have
proved that the traditional group velocily may not give a correct expression for these
anisotropic waves. So. these applications may be misleading. For example, the observational
analysis of Horel and Wallace {1981} and numerical experiments of Simmons (1982) and
Navarr (1990) have shown that the remote responses lo an isolated tropical healing may ex-
tend straightforward to the polar regions, and do not always draw the great circles as pre-
dicted by the ray-tracing theory (Hoskins and Karoly. 1981: Karoly and Hoskins, 1982},
which was based on the use of traditional group velocity. Also, the deficiency of ray—tracing
theory in interpreting the formation of stationary waves at high latitudes has been pointed out
by James (1988). There were also the approaches to these meteorological problems without
using group velocity. For example, the meridional variations in planelary stationary wave
phases and graphical distributions of low [requency anomalies have been explained more
realistically according to the meridional asymmetries in orographic and thermal forcings,
mean circulation fields and heat and momentum fluxes {(McHall, 1990a, b, c).

[V. GENERAL GROUP VELOCITY
I. Calculation Formulu

The previous argument gives also the general expression of group velocity. Since group
velocity is independent ol coordinates, we have ¢, = c; . Here, c; is evaluated from {10).
From{13),

¢ -‘—Za—wcos m-=£k-v,‘m. 23)

This equation is exactly the same as (3). Thus, we have obtained, from different approaches,
the more precise mathematical expression of multi-dimensional group velocity. For isotropic
waves, il gives the traditional expressions of group velocity as a particular example. Thus, the
traditional group velocity may be referred to as isotropic group velocity, while the new ex-
pression gives the general group velocity.

For the wave group made by plane waves, wave envelope propagates along the paths of
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single waves, which is parallel to wavenumber vector.The unit vector of the path is given by

r=

cos o X; .

]+

n

i

Thus, the vectorial expression of group velocity shows,

N k,
tg=zk—2k-vkwﬁi=£z—k-vka}k. (24)
t=1

The Cartesian components of group velocity are, then,

B!

k,
¢ =k_;k.v*w' (25)

If the group velocity equals the phase velocity

v =2 (26)

defined by Whitham (1974a) and Pedlosky (1979), the waves are nondispersive waves.

The correctness of the new notation can be examined in the following examples. The first
one is the nondispersive isotropic sound waves of which group velocity must be equivalent to
their phase velocity. Provided that angular frequency of the sound waves in an isothermal at-

maosphere is given by
w=c,JkI+kI+ED,

where ¢, = ¢,RT /¢, measures Laplacian sound speed, equations (23) and (25) show

[

5
e, =Tk =¥

Cg TC TV i I—

g pit

respectively, This group velocity may be obtained also from (1), and is identical to the

isotropic group velocity.
Another example is the anisotropic Rossby waves discussed earlier. The group velocity

and its components computed for (18} give

cg=(§+£2—)cos 8°, 27
and
ky f_ . k, .
O T (u +;{%)cos 0", en =% (u+~%)cos 8,
respectively. The direction ol group velocity is given by
tan o, =l =kf’ =Un
g2 ks, L

Thus, the group velocity is in the direction of wave propagation. After rotation of
coordinates, the general group velocity evaluated from {22) is exactly the same as that ob-
tained above, and is also in the direction of wave propagation. It will be proved generally in
the following that the general group velocity is independent of cocrdinate rotation.
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2. Independent o f Coordinates

For the coordinate transform provided by (11), transform of wavenumbers is given by
{12). When &, &k, k4 #0, thereis

b dw D
(a!;:? ’aki: f)

It is important to note that this relationship does not hold when the transform changes the
dimension of wavenumber vector. Applying this relationship for general group velocity gives

. 1
el =k’ VW, 0=

g k‘

1 (Ew Ze 5cu) .
k®Ook! ek ek! :
k:

ky

om Gw P .

=%(mma)f\ ks

N
kl
~L(fe do fw )
k Mok 8k, Ok, :
k}
_._l_k_'\\_/’ —
=7 W=y .

These relationships tell that magnitude of the group velocity is independent of the transform.
If the group velocity is transferred back to the original cocrdinates, we may see

Cgy ky
A . | R 1 I
Cer |T 2 e S
.
Cg3 ks
k| gl
o I LR v I
L ) It 82
Ky Cg3

Thus, the direction is also independent of the transform. I1 has been proved in the preceding
section that the general group velocity is unchanged also by the particular transform after
which the dimension of wavenumber vector is changed.

¥. OBLIQUE GROUP YELOCITY

When wave energy is identified with amplitude of wave envelope which moves along with
wave envelope phases, wave energy of anisotropic waves moves at velocity U as well
as ¢, {referring to Fig. 1). The phase velocity which is not in the normal direction of wave en-
velope phase may be called the oblique group velocity. It will be proved in the following that
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the isotropic group velocity is just an oblique group velocity for anisotropic waves.

The direction numbers of general group wvelocity are (k, k,. k;). but are (bL/,
ol . bU,) for isotropic group velocity. Where, & is a constant. An angel between the two
velocities is calculated [rom

k-U k|U|+k2U2+k3U3

cos B="—— = — = (28)
kU JG? + 62+ k0t + U3 + U
itis obvious in Fig. | that
= r
v cos 0 (29)

Applying (24) yields

5 P 3
) )5 ( dor )‘ dw )
U= (— +l— 1 +1—).
f ey ok, &k,

This is just the magnitude of isotrapic group velocity. It is roted that there are infinite obligue
group velocities towards different directions, at which wave energy and crest are conserved in
propagation. The isotropic group velocity (5) gives only one of them for anisotropic waves.

The relation between the general and isotropic group velocities may be given by (23), that
is

keU=ke, .

It can be obtained also using (28) and (29). Since general group velocity is in the direction of
wavenumber vector. we see

If #=0 as for isolropic waves, we have I/ = ¢, . This is just the previous example of sound
waves. While. il #==0 for anisotropic waves, we have U>c, These relationships between
the two group velocities can be confirmed by Rossby waves discussed in the preceding section.
From {20}, (21) and {27), we have

_{= B ; -
k- U={u+— — ) (k,cos 0— &,sin D)=ke,.
( kf"‘ké) 1 2 4

The angle between these two velocities is calculated from {(28). In general, energy of Rossby
waves propagates at the speed lower than that of tsotropic group velocity used before.

For wave energy moves not only at general group velocity but also at obligue group ve-
locities, 2 mathematical notation of group velocity should not be derived by considering the
conservation of wave energy or wave crests only. Because so obtained group velocity may be
an oblique group velocity (Brillouin, 1960; Pedlosky, 1979). Compared with the group veloci-
ty (24), oblique group velocity (5) is less significant. It varies with rotation of coordinates and
is meamingful merely for the waves with infinitely large phase surfaces. Thus, it is not proper
to choose (5) as a general representation of group velocity.

v1. SUMMARIES

The traditional expression of group velocity used in meteorology was derived by consid-
ering the conservation of wave energy or crest only. These conservation principles alone can-
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not specify a unique propagation direction of wave energy or crest, while group velocity has a
specfied direction parallel to the normal direction of the phase surface of wave envelope.
Therefore, these principles are only a necessary but not a sufficient condition for deriving
group velocity. Since the traditional group velocity was derived without considering the direc-
tion of wave group propagation, it may represent a moving velocity of wave envelope in an
oblique direction for anisotropic waves, which js generally not in the normal direction of the
phase surface of wave envelope. Also. the traditional expression of group velocity varies with
rotation of Cartesian coordinates in this case. For these reasons. it cannaot be considered as a
general expression of group velocity, although wave energy or phase surfaces of a wave group
moves also at this velocity.

The more general expression of group velocity has been derived in different ways. Fora
provided dispersion relation, magnitude of group velocity is determined by the directional
derivative of wave frequency along the direction of wave propagation in wavenumber space.
Its direction is in the normal direction of wave envelope phases. This velocity is also the veloc-
ity at which a wave point moves. Thus, the general group velocity represents the propagation
velocity of wave particles in quantum physics.

I1 has been proved generally that both magnitude and direction of general group velocity
are independent of transform of Cartesian coordinates. For the waves propagating in varying
environments. general group velocity gives a local group velocily at a given time. We shall
prove {urther in Part 1] that mean wave energy, momentum and wave action propagate at this
velocity.
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