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ABSTRACT

Arnol’d’s second nonlinear stability criterion for motions governed by a general multilayer quasi—geostrophic
mode] is established. The model allows arbitrary density jumps and layer thickness, and at the top and the bottom of
the fluid, the boundary condition is either free or rigid. The criterion is obtained by the establishraent of the upper
bounds of disturbance energy and potential enstrophy in terms of the initial disturbance ficid.
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L INTRODUCTION

Mu, Zeng, Shepherd and Liu (1992; 1993) studied the nonlinear stability of multilayer
quasi—geostrophic flow with equal density jumps, and with both rigid boundary conditions at
the top and the bottom of the fluid. By using the matrix transformation theory properly,
which criginally appeared in Zeng (1979; 1989), they established upper bounds of disturbance
enetgy and potential enstrophy in terms of the initial disturbance field, and obtained
Arnol’'d’s second stability theorem. In this paper, it is shown that, without mych difficulty,
their method can also be utilized to treat a quite general multilayer quasi—geostrophic model,
with arbitrary density jumps and layer thickness, and with either a free or rigid (including the
possibility of topography) boundary comdition at the top and the bottom of the fluid.
Arnol'd’s second theorem, which is a nonlinear stability criterion, is obtained (Criterion 3.1).
The upper bounds of energy and potential enstrophy of finite—amplitude disturbance to
-steady basic state are established. These bounds are expressed in terms of the initial disturb-
ance fields, and hold uniformly in time, and tend to zero uniformly as the initial disturbance
decreases to zero, which is an improvement over the ones established by Mu et al. (1992;
1993) provided that the initial disturbance energy is not zero. .

It is also worthwhile to point out that this paper also presents a sufficient condition for
the nonlinear stability (Criterion 3.3), which is equivalent to Criterion 3.1, but is easier appli-
cable.

Ripa {(1992) also investigated the nonlinear stability of motions governed by the model
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we consider in this paper. The main results of Ripa’s (1992) was corrected in Ripa (1993)D.
But in that paper Ripa only considered the equivalent barotropic model in detail and only
mentioned briefly that the multilayer case could be treated without much difficulty. No de-
tailed result had been given there.

Il. THE MGDEL

Consider a stratified fluid of N superimposed layers of constant density p, <+« <p,,
with arbitrary density jumps and mean layer depth 4, . The flow is governed by the mullilayer
quasi—geostrophic potential vorticity equations (Pedlosky, 1979; Ripa. [992].

8P,
= THOP =0, = LN, (2.1

where ®,(x,¥.t) is the stream function in layer i and

N
Po=Vl0,—d, ' LT, 0, + fxy), i=1N {2.2)
=1
is the potential vorticity in the ith layer. And #(fg)=f g, — f, &, is the two-dimensional
Jacobian, x and y are the castward and northward coordinates, respectively, ¢ is the time,
72 the two—dimensional Laplacian operator, and

(x,p)

5= o+ py- R,
h=h=wty s =ht B

FAMERY)

Iu =f¢-)+ﬁy+"TN“'_:

where £, is a representative value of the Coriolis parameter, and 74{x,y) and 7, (x,)) are the
topography at the top and the bottom of the fluid respectively. If the top (or bottpm) bounda-
ry is free, t, (x,¥} = 0 (or 7, (x,y) =0).

T=(T;)is an N X N symmetric tridiagonal matrix,
Ty =hWg ) +(g) 1) i=lN,

Tivip =Ty = - filg) <0, i=le N1,
T.=0, li—j>1,

i
where g, is the buoyancy jump across the interface between the ith and the (; + 1)th layer,
and if the top (or botiom) boundary is rigid, then (g,) ' = 0 (or (gy) ' = 0); and when the
top {or bottom) boundary is free, (g,) ~' >0 (or (g)~ '>0).

The horizontal domain D under consideration is a bounded, multiply (or simply) con-
nected domain on the beta—plane, with a smooth boundary 4D consisting of J + 1 simple

closed curves D ;, j= 0, », J. The boundary conditions are the usual ones of no normal flow
and conservation of circulation in each layer, namely

DRipa, P. 1993. Amol'd’s second stability theorem for the equivalent barotropic model. J. Fluid Mech.,
to appear.
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oD,
ds

=0, ij Vo, 7ds =0, (2.3)
an el
i

where s is the arc length along the boundary 4D, and # the cutward unit normal. Now sup- -
pose that (@,, P,)=(¥,, Q,) is a steady solution to the system (2.1)-(2.3), and we further as-
sume that there exist continuously differentiable functions ¥, () such that

V(e ) =¥.(0.(xy), VxpeED;, i=i-N. {2.4)
And the disturbance (¥, ¢,) 10 this basic steady state is defined by
o, =0 +y,, p,=0, +4q,. (2.5)
with

~
g, =V, —d YT, i=1N. XY
=1

11I. NONLINEAR STABILITY CRITERIA

Corresponding to the hypothesis of Arnol’d’s second theorem, we now assume that the
functional relation (2.4) are monotonic with a negative slope, and there exist positive con-
stants C; and C,; such that

.
0<C, < —dQ‘ €Cy <@, i=[yN, @a.n

where &V, /dQi =¥, /V@,. The purpose now is to establish upper bounds for the dis-
turbance energy

s0=3 [La|vul + it it @V
+ E(g"] T sy — 9,0 Jdxdy (3.2)
and the disturbance enstrophy
z(:)=%j; édiq,?dxdy (3.3)

in terms of the initial disturbance fields.

To this end, first define the functions G {4) = r‘!‘i(-r)dr
0

and
4=\ ¥ 6,0, +4)-6,(0)- 610, Jixdy. (3.4)
D oi=l

Using conservations of total energy, 1olal potential enstrophy and total circulation in
each layer, it is easy to show that
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d%(fm FAE)=0, ¢>0. (.5

That is, E + A is the energy—Casimir functional.
Following Mu et al. {1992; 1993), we decompose the disturbance (i, , g,) into two parts

W=y Hu . g =q,tq] . i=1swA, (3.6)

whereg * = I

9., dxdy / I dxdy, ¢, =q,(x,p,0), and ‘f"; is the solution of the problem
D D

Vlw’—d"ir ¥, =q, 2, =9
i i ¥ =4 , (3.7
= &5l

I Vg, »Fds =0, j=0smd; i=1eN.
on;

The existence and “uniqueness” of such a solution can be established as in Mu et al. (1993).
Let 4 be the least positive eigenvalue of the problem

Vlp+ip=0 in D; ‘;—"" =0, I Ve« ads=0, j= 0. (3.8)
$lap EL
Define the matrix
K=diagld; " dy '), {(3.9)

and the disturbance energy associated with (', 4’} is

0 =3 (S| Vui [+ Ale) 007 + ) P+ T

W0y~ ) Ndxdy. (3.10)

Analogues to Mu et al. (1992; 1993), we can prove that
E'(t)sﬂ @V K "ME+KTRK™'T, (3.11)
»

where " = col(qJ, gy ) and §F = col(r| =+, ) are column vectors.
Denote

e _If o
E —2j' (3 d,

Hoi=1

Tu; [ ey W+ ) O+ S )

('J’;H - 1»!’,. )z)dxd.l’,

z® =%j Y d (g Vdxdy,
p oi=l
’, 1 " "2
Z(£)=E Y.d.(q,) Jdxdy.
D r=
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then we have

E(SWEEN 7 +(E*) 7P (3.12)
ZW=Z{WO+Z2". {3.13)
Since £ and Z° are independent of time (see Mu et al. {1992, 1993), by (3.11)-(3.13), we

need only to estimate Z'(¢) so that the upper bounds of Z(¢) and £(r) follow immediately. By
Assumption (3.1} and (3.5), we have

"
%I ¥ C,.d, (g, Y dxdy < — A() = E(t} — E(0) — 4(0). (3.14)
n I=1
In the following, a slightly different method is adopted to estimate Z‘(¢) and E°(¢), which
vields a better result:
Denote

I
H=E" — E(0)— 4(0) —% Y €, d (¢ Vdxdy,
b i=1
then by (3.12) and (3.14), we have

W Sc,d 4 drdy < EWO+2E" B + A (3.15)
2J), -

Let C = diag{C,, ,»»+.C ), by (3.11) and (3.15) we have

1

ZI ) K (C—E+KTK) DK '§dxdy<2E")"?

D

142 .
(%_[ (E")K"(AE+KTK)"K"a*dxdy) +H.
D

Obviously, A,, the smallest eigenvalue of matrix KTK, is positive or zero {cf. Liu and Mu
(1992), Lemma 3.1). We also assume the matrix € — (A€ + KTK) ™' is positive definite and
its smallest eigenvalue is &, , then

k,Z(O—2AE" /(A + 4,0 HZ'@) T -H <0, (3.16)

since Z'(¢) is real, this quadratic inequality with respect to (Z‘(:))' 2 yields
ZWHSEE Y T+ (E" +Ak )2 7 Gk, (3.17
where 2 = 2+ 2, . Note also that (3.17) guarantees that £° + 1k, H > 0 holds.
By (3.11), we have (cf. Mu et al.(1593))
Z'
ik

Using this inequality, together with (3.12), (3.13} and (3.17), we obtain the bounds of £(r) and
Z(2) as follows: .

EQSUE Y A +1k,)+(E” +k B/ Gk (3.18)

E() <




No.} Liu Yongming and Mu Mu 4]

ZO<WE' Y H(E + I )V /RN +Z" . (3.19)

Since E°, H and Z" depend only on the initial disturbance, and tend to zero as the initial
disturbance tends to zero, the bounds of the disturbance energy E{(¢) and disturbance poten-
tial enstrophy Z(r) tend to zero as the initial disturbance does. Thus, take this as the defini-
tion of nonlinear stability, we have

Criterion 3.1. Suppose the basic state (¥,, @) satisfies (2.4), {3.1) and the matrix C
—(AE+KTK) ' is positive definite, then (¥;.Q;) is nonlinearly stable. And the upper
bounds of the finite—amplitude disturbance energy and potential ensirophy are given by
(3.18) and (3.19), respectively.

Similar to the argument of Mu et al. (1992; 1993), we conclude that &, , the smallest
cigenvalue of the matrix C — (AE + KTK) ™!, satisfies

k, 2k, =minC,, —

|| r—

So if 2 min C,, > 1, then the matrix C — (1€ + XTK) ™’ is positive definite and we have

Criterion 3.2. If Zmin €,, > 1 , then the basic state is nonlinearly stable in the sense
described in Criterion 3.1. And (3.18) and (3.19) also yield upper bounds on E(¢) and Z{r) af-
ter k, isreplaced by £, .

It is worthwhile to point out that the functional H defined in this paper is always less
than or equal to the functional H defined in Mu et al. (1992, 1993), the bounds (3.18) and
(3.19) contain the bounds there as a special case. If the initial disturbance energy is not zero,
the H defined here is smaller, so the bounds established in this paper is better than the corre-
sponding ones there.

Sometime, Jeaving other matter to further studies, we are only interested in determining
whether the basic state is nonlinearly stable. In this case, the following result is convenient,
since we need not to find out the inverse matrix of AE + KX TK for the verification of it.

Criterion 3.3. Suppose (2.4) and (3.1) hold. If matrix AE + KTK ~ C ™" is positive defi-
nite, then the basic state is nonlinearly stable.

To get this conclusion, we need only to prove that

AE+ KTK —C™" is positive definite iff C — (AE + KTK) "' is. This is demonstrated as
follows. For any matrix X, let J{X) denote the number of its positive eigenvalues. By matrix
theory {cf. Horn et al. 1985), {XY)= KY)if X is a positive definite matrix and Y is a
symmetric matrix. Now since KTK is a positive or semipositive definite matrix, 1E + KTK is
positive definite and AE + KTK— C ™' is a symmetric matrix, we have

KC—{AE+KTRK) " N=HAE+KTK) 'GE+KTK- ¢~ HO)
=[(JE+KTK—C DO =HE+KTK—C").
This is the desired result.
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