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ABSTRACT

A stability of a nonlinear ultra-long wave and its solution are discussed in this paper by employing Burger model
which is subject to heat resource. It is of interest noted that the wave solution can be described by an equation of
KDV or MKDV and that conditions for the existence of the solution are related to characteristic divergences. In addi-
tion, a wave velocity expression for monlinear wltra—long waves and some diagnostic correlations among wave
parameters have been obtained.
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I. INTRODUCTION

1t is proved by weather forecast practices that the progression of a weather system, which
affects local weather events, is usually influenced or controlled by a much longer—wave
weather system. Indeed, a long-wave movement is responsible for a local weather event in the
process of a med—term weather system, but its movement does be closely related with an
ultra—long wave in which the scalc of time and space is much longer than it. The ultra—long
wave, therefore, can be regarded as a “background” of the long wave movement. Although
great progress has been made in uaderstanding the behavior of ultra-long waves since 1960s
thanks to the unceasing studies and analyses made by meteorologists such as Burger (1958), -
Zhu (1964), Deland (1965}, Dickinson (1968), Eliassen (1969), Clack (1978), Frederiksan
(1979), Zhang (1979), Call et al (1979) and Egger et a! {1983), the nature of them is still not
fully understood.

The purpose of this research is to study the influence of heat sources on nonlinear
ultra—long waves and to wish that the result will bring some benefits to the study.

IL. BASIC MODEL

In P coordinate, the Burger model depicting an ultra—long wave can be devised as fol-

lows:
—p= 09
M ax
o, v )
prr(E+2)=0, W

(DThis research work is a part of the Eighth Five—Ycar Plan’s Programme entitled “theé'ries and ap-
proaches of long—range weather forccasting.”
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where, 5 is a parameter (approximately constaﬁt) of atmospheric static stability; Q is a heat
source;, fi= g—:: is Rossby parameter {(approximately constant); the other symbols have the

same meanings as they usually do.

For the sake of convenience, it is necessary to assume that Eq.(1) should be a closed
equation and that the term “heat source” should be directly proportional to the vertical veloc-
ity, that is, @ = aw. It is evident that there is an adiabatic atmosphere (a diabatic atmosphere)
when o= 0( #0).

In regard to an ultra-long wave, there exist downdrafts in the east of a trough, while
updrafts in the west {(Zhang, 1983). The term « > 0 (<0), therefore, eapresses a cold {heat)
source in the west of the trough, and a heat (cold) source in the ¢ast.

It is supposed that there are several formal soluticns for Eq.(1), which are

u=U0), v=V({@), «=Q06), =00, @

here, the formula 6 = kx + [y + np— ot is a phase angle, letters &,/.n, are wave number, and
the symbol ¢ is a frequency.

By substituting Eq.{2) into Eq.(1) and eliminating the variables of U,V,® the variable
Q can then be determined by a equation:

+
O = F(Q) = _kﬁ_(’;_“;ci , (3)
R f@+Ze,)
n
where the symbol “*” means to make a differential to &; ¢, = % is a wave velocity on x—axis;
{1#— £ c, -
n

Eq.(3) is a fundamental one in this article to describe a disturbance of nonlinear
ultra—long waves influenced by heat source. The following sections will discuss in details the
nature of the equation.

HI. STABILITY OF ULTRA-LONG WAVE DISTURBANCES INFLUENCED BY HEAT SOURCE

In general speaking, it is difficult to obtain a precise analytic solution. For this reason, a
method of nonlinear expansion put forward by Liu (1982} is adopted to discuss the approxi-
mate selution in the vicinity of a balance point.

Demanding £ = P, then Eq.(3) can be simplified into a first—order simultaneous equa-
tion:

O=p, P=F0). C))
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In Eq.(4), there exists only one balance point 4(0,0). After making a Taylor series expansion
to the nonlinear function F(£2) near point 4, a equation

+
Sd nz

n*fe, ke k’ PR ®

Q)=

is obtained. IT only the first term con the right side is kept, Eq.(5) then becomes:

_ _Bista) a)
¥=rpr, 2 Pe. (6)

The above equation is refered to a linear system, which describes the disturbances of linear ul-
tra—long waves influenced by heat source in the vicinity of point A; If keeping the first two
terms on the right side, it then becomes:

G+a) fQ QF
@=> P’E————nfc (@ kc) %)

It is called a square system and if keeping the first three terms it will become:

_Bis+a) n n’ + uznz ) ®
nfe, Ll
Which is termed a cubic system. In this section, only the disturbance stability is discussed, and
the analytic expression will remain to be solved in the next section.
Through analysing the linear system {6), the characteristic root of a characteristic equa-
tion can be determined, that is,

AZ=L—(2’+“) . (9)
n fcx

In view with the term f> 0 in the Northern Hemisphere, a critetion can be gained from

Eq.(9):

sTE (>, (10)

X

which means point A is a center (saddle point) or a stable (an unstable) point.

Through examing square system (7) and cubic system (8) by the use of
Poincare—Bendxson’s theory and symmetrical principles (Qin, 1959), it is noted that the na-
ture of the linear system is quantitatively identical to that of the square and cubic systems
near point A.

An instable criterion for the disturbance of a nonlinear ultra—long wave influenced by
heat sources in the vicinity of balance point A is then obtaired:
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s+a
c

x

>0 . (11)

1t is clearly seen from the criterion that the disturbance instability is subject to the
parameter of atmospheric static instability, phase velocity ¢ of disturbance and parameter
a of heat source. Regarding the large size of an ultra—long wave disturbance, the parameter of
atmospheric static stability is generally larger than zero.

Regardless of the heat source (a = 0), an eastward—advancing ultra—long wave (¢, > 0)
will be instable, while a westward—withdrawing one stable. In other words, there exists only a
stably—bounded ultra—long wave withdrawing westward when the heat source is disregarded.
Otherwise, it is different unless there is a cold source in the west of a trough and a heat source
(a > 0) in the east. While, if there is a heat source in the west, a cold source in the east (¢ <),
and their intensities reach to a certain extent (|a|> s), the heal source will make the
eastward—advancing ultra-long wave stable and the westward-withdrawing one instable.
The results are contrary to those in the absence of heat sources, which imply an important ef-
fect of heat scurces on the stability of an nonlinear ultra-long wave disturbance.

. n T i . .. .
Plotting ¢, = ¢ ' €, = " as a wave velocity in vertical direction, it can be seen from

climatic mean charts that axes of a ridge and a trough of extra—iong waves tilt backward with
'the increase of height (Zhang, 1983). In this case, the term a / k is larger than zero. The
nonlinear ultra—long wave always transfers energy upward when disregarding heat sources
(¢, <0). This feature of vertically trapsfering energy upto the stratosphere is of great signifi-
cance to air motions in the stratosphere. On the contrary, a nonlinear ultra~long wave tends
to transfer energy downward (¢, > 0) if taking into account the heat source along with the
formula — z > s (i_e., there is a heat source in the west of a trough, a cold source in the east,
and thier intensities reach to a certain extent), having an influence on the air motion in the
middic and lower troposphere. It is necessary to point out that a series approximation would
not affect any stability criteria of Eq.(3) (He, 1993).

IV. SOLUTION QF NONLINEAR ULTRA-LONG WAVE DISTURBANCES INFLUENCED BY HEAT
SOURCES

In this section, emphasis will be given to the solution of nonlinear ultra—long wave dis-
turbances and the correlation between wave velocity and parameter.
Eq.(6) can be rewritten:

e — B+ 2)Q
o —_—nzfcx . (12)

B+ a)

nfe,

Assuming = — 1, then

+
¢, = —ﬁf;‘—sz'ﬂ : (13)

In this case, the wave solution has become a stably~bounded cosine function. And Eq.(13)
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is regarded as a phase velocity equation. When « = 0, it will be degenerated into

As
6, =——%93 . ' 14
Eq.(14} is considered as a wave velocity expression disregarding heat sources. By comparing
expressions (13) and (14), it is noted that the westward—shifting wave velocity speeds up
(slows down) when there is a cold (heat) source in the west of the trough [a>{(<XJ ,a

heat {cold) source in the east, and relatively no heat source (x = 0). By assuming E% =1,
n fec,
then the sotution of expression (12} becomes an instable solution———%¢” exponential func-
tion.
An equation can be deduced from square system (7):
g+ Hotnoy Bstwg g (15)

nkfci n fc,

It is a famous KDV equaticn. In addition, another equation can be derived through
intergration of square system (7):

—28(s +
@) = ?5}(‘%,“) g(Q) | (16)
n x
3 34nf ket
Here, the term g{Q)=0° — Cx 0° nf °x is a cubic multinomial of Q, A4 is an inte-

In - 26Gta)
gral constant. In expression (16) there exists a bounded periodic wave solution, which requires
2(Q) =0 and three different real roots. It can be demonstrated that the integral constant
A must satisfy:

- Bls + &) &*

3t f

From expression {16), 4 = (@)* ]n=n can be obtained. Furthermore, an expression £ = %

0<A< an

can also be established from the third formula of Eq.(1), where, D = g—; + aa—; is a horizontal
’ 2 .
divergence. As a consequence, A =29—, where, Do = (a_u +6_v is a “characteristic
nt dx 8y lg=0

divergence”. Sa, expression (17) can be rewritten as follows:

Bls+a)e Kk ]z - a8

0<IDo) < [ 7

Tt shows that the condition for a bounded wave selution gives an upper limit to.the character-
istic divergence. Once the limit is exceeded, the instability of a nonlinear ultra—long wave will




96 Advances in Atmospheric Sciences Vol.1l

take place.
When the condition for the existence of a stable wave solution is satisfied, a
stably—-bounded wave solution is

Bls + )2, —Q,)

Q=Qz+(ﬂl——ﬂz)c: onfkc

8, (19)

where, ¢, () is Jacobi elliptic function. The term Q; {i = 1,2,3) expresses
Q =0, {cos[—cos_ W12k, — 1)]- —}
Q,= —ﬂu{cos[%cos'](lzhu —l)]+§]+%} ) 20

0, = -0, {coslycos 1126, — D -31+ 1} .

- k —n f
Here, Q, = o=, It clearly shows that expression (17) is
o .n o o = 28(s + w)e, B y P

equivalentto 0 < 4, < %

A nonlinear yltra—long wave, therefore, can be expressed in an elliptic cosine wave. Its

wavelength on X-axis is
2 onf kci
L2 o am, -, K@ - @

Q -0,
Q, -0,
amplitude 0 = &, —Q, . It is evident that the heat source has an influence on the wavelength
and amplitude of ultra—long waves. When the value of {; — £, is given, the squared wave-
length is reversely proportional to heating intensity.

I the condition for the existence of a stable wave solution (17) or (18) is not satlsﬁcd an
instable wave solution can be derived from expression {16):

s {Blst ), — ;)
= - b hatch el S 14 22
Q=0, +(Q, —Q,)ne hor? 0 (22)

It can be scen that the #“e” exponential

where, K(m) is a complete elliptic integral of the first kind, module mt= and wave

where, function e = (en) !, module m, = ~2——2.
Q -0,
function of a nonlinear instable wave solvicn is different from that of a linear instable wave
solution. By using an approach similar to Lu (1987), it is calculated that in view with the
linear and nonlinear instabilities the periods that need to double their initial amplitudes are 18

hrs and 60 hrs, respectively. This exhibits that the nonlinear instability tends to make a dis-
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turbance to develop siowly, which has a good agreement with the time scale of an increasingly
instable disturbance in the real atmasphere (Ciark, 1978).

Mext, a relation between wave velocity expression of nonlinear ultra—-long wave and
wave parameter is studied.

From expression (20}, it is easy to obtain another one:

-130,
2

Q,0,0, =30 0,0, +Q,Q, +2,0, =0; Q, +0, +Q, = (23)

Supposing £, =rf), then €, = (* — 1), and Q, = 58, it can be derived from expression

(23) that 5 = ’z]:—rl . According to @2, > 0> Q, > 12, then

1—7

~ >
r>0>r—1 r2r—]

(24)

By solving expression (24), -;- <r< % Additionally, a formula is obtained from expression
{23}

Q,=—g(}, {29
23 =3 +1).

3(1—2r)
waves, therefore, can be writien:

where, q(r} = . The first expression of wave velocity for nonjinear ultra—iong

- —ng(r)
o & . (26
This expression depicts a relation between wave velocity and amplitude when the value of g(r)
is given.
By substituting expression (25) into formula g{£2, } = 0 and bring them into order, it then
becomes:

. = =BG+’ 30)

x . @n
n? f A
(3 r . . . L
Where, §(r)=— (— -~ —) It describes a relation between wave velocity and f, which is
32 gl
known as the second expression of wave velocity.
It is also easy to set out another expression-——-the third expression of wave
velocity—~——by substituting L = -2k—n into expression (21),
2 .
~ Bls +
e =Bt (T Vg (28)

2K (m}

x nzf

“2r—3"

Here, g,(r}= P e This expression is closely similar to that (13) of linear ulira™
e =13r )
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-long waves. It, however, contains some factors relating to amplitude, which reflects a feature
of nonlinear waves.
Regarding & disturbance with small amplitude, that is, f1—0, 2,.Q, —0, m*> —0, K(m)
- 30
—'g .0, —*—2—0 T —'% .9y (% }=1. Then, expression (28) is simplified as

e =l%‘-) . (29)

It is noted that this expression is consistent with expression (13), which explains that the linear

ultra—long wave is a special case of the nonlinear extra—long wave (2 —0, r —’% ).

It can be concluded from expression (19) that the shorter is the wavelength, the slower is
the wave velocity; the bigger the amplitude, the slower the wave velocity; and the higher the
latitude, the slower the wave velocity. The wave velocity contains not only an amplitude, but
also a wave number as well, which mirrors a feature of wave fluctuations with a limited
amplitude and responses quite‘well to real weather events. Practices of weather forecasting
show (Zhang, 1983) that as is the case with some ultra~long wave systems such as blocking
high and cut-off low the moving velocities of stable nonlinear ultra—long waves often speed
up substaniially due to the rapid diminution of their wavelength and amplitude as they sub-
side and breakdown, and vice versa as they are in the initial and development stages.

'Finally, the cubic system————expression (8)———-will be examined, from which a formu-
la is derived:

@ = 23ﬂ:3f‘:3'1) o+ 3;32(.}*; ;E)ﬁl i, 30$)

~ Q . . .
where, )= Q+—3‘£-. Formula (30) is a famous MKDYV equation. A nonlinear extra—long

wave, therefore, can be described not only by KDYV equation taking into account the square
system, but also by a more precise MKDV equation in consideration of the cubic term. In
fact, the latter is much better to describe ultra—long waves in middle and high latitudes. It is
not difficult to get a special solution by solving Eq.{30):

2= {Zoor ([2D5)- Lo, o

Discussions about the condition for the existence of wave solution and for wave velocity ex-
pression are the same with those about square system. F is hence unnecessary to go into de-
tails here.

V. CONCLUSION

An ultra-—long wave is an important wave form in the atmosphere and plays a critical
role in medium—range weather forecasting. Through making a study on stability arid solution
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of nonlinear yltra—long waves, preliminary results have been achieved:

(1). In the vicinity of a balance point, a cold source in the west (east} of a trough and a
heat source in the east (west) of a trough in the static stable atmosphere will have a stable (an
instable) influence on westward—withdrawing uitra-long waves and an instable (stable} influ-
ence on castward—advancing ultra-long waves. Regardless of heat sources, there only exists a
stable westward—withdrawing ultra-long wave.

{2). A nonlinear ultra—long wave can be approximately depicted by a well known KDV
or MKDV equation. Its bounded periedic solution is an elliptic cosine wave and wouid be de-
generated into a linear cosine wave in extreme cases,

(3). The existence of a nonlinear ultra—long wave has restrained to a certain extent the
characteristic divergence. Once a horizontal divergence exceeds the limitation, an instable
nonlinear ultra—long wave will occur. The instable wave solution is different from that of “e”
exponential function, the former is able to slow down the development of a disturbance.

(4). The wave velocity expression contains wave amplitudes, heat source paramesr, and
other factors, which reflects that the nonlinear feature of ultra—long waves and the heat
source have an influence on wave disturbances. The analysis shows that a nonlinear
ultra-long wave movement will speed up as its wavelenth gets shorter and amplitude gets
smaller, and vice versa. These phenomena response quantitatively to observational facts.

As mentioned above, a nonlinear ultra—long wave has been discussed by the use of a
simple model. Consequémly, a good result that is impossible to be obtained if employing a
linearity has been achieved. 1t is however still quite a preliminary because many physical pro-
cesses have not been taken into account and heat source parameters are rather limited. All of
these problems remain to be further studied hereafter. It is my hope anyway that this result
will benefit the study on nonlinear ultra—long waves.
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