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ABSTRACT

This paper coucerns the reconstruction of a dynamic system based on phase space continuation of monthly mean
temperature 1D time series and the assumption that the equation for the time—varying evolution of phase—space state
variables contains linear and nonlinear quadratic terms, followed by the fitting of the dataset subjecied to continua-
tion 50 as Lo get, by the least square method, the coefficients ol the terms, of which those of greater variance contribu-
tion are relained for use. Results show that the obtained low—order system may be used to describe nonlipear proper-
ties of the short ranpe climate variation shown by monthly mean temperature series.
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1. INTRODUCTION

From the investigations made in recent years of weather—climate time series (Peng et al.,
1989; Yan et al., 1990, 1991, 1992) abundance of information is found to be about dynamic
systems of concern and can be used in the following aspects: 1) a fractal dimensionality of a
phase—space altractor for @ dynamic system can be determined by computing the incident
function of the data treated by phase—space continuation; 2) a predictable time scale of the
sysiem can be found out by caiculating Kolmogorov entropy based on Lyapunov exponent of
the data for describing the attractor’s structure. Obviously, these pieces of information serve
as an indispensable basis for us to gain insight into the system. This is only one facet of the
problem, however. More important and interesting is how to reconstruct the system in terms
of 1D time sequences. Here we may conceive the problem to be a sort opposite in nalure to a
differential equation. :

It is known that the usual differential equation is built on description of a real physical
process or system’s state and solved on initial and boundary conditions of its own. If the solu-
tion were existent, unique and dependent on the rhs terms and the refated conditions of the
equation, the problem of the definite solution would be well-posed. The commonest “oppo-
site” problem may be that, if the known parameters and coeflicients of a differential equation
appear as unknown quantities, can the original parameters and coefficients be found out by
means of other conditions and coefficients be found out by means of other conditions or in-
formation? Just starting from the motivation, an attempt is made to rebuild a dynamic system
through phase space continuation of 1D time series.

II. BASIC ASSUMPTIONS

Following the clue, we set the dynamic model of a system to have the form
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where i = j=1, 2, --- » and A, = coefficient. The solution of the “opposite” problem means
thal the nonlinear function £;(j= 1, 2, -~ 1) is derived with its specific form unknown but the
conditions for the particular solution of {1) known. As a preliminary study, (1) is set to have
linear and quadratic nonlinear terms, with the evaluation of jdepending on the system’s
fractal dimensionality d. Generally, ;> D,meaning that only the minimum integer
dimensionality of the phase space is taken that supports an attractor of the system.
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Fig. 1. Variations of 19081980 monthly mcan temperature at Guangzhou, South China, with A
for Decernber, B for January and C for February. The climatology and observation are given by
broken and solid line, respectively, with the subscript of the former 1-21 standing for 21 cold win-
ters {thereof 3, 18, 20, 21 representing 4 severe winters) and the superscript 1-9 for 9 warm winters.
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In this study, monthly mean temperature is employed as the climate variable, with phase
space continuation of 1908~1980 monthly mean temperature 1D series to produce a set of
particular solutions of (1), followed by determinaticn of the coefficients of the terms via solv-
ing the contradictory expression, whereby a dynamic system is reconstructed for short term
local evolution of low—latitude climate.

Fig. 1. illustrates the monthly mean temperature of 1908-1980 winter months of
Guangzhou. One can see that apart from annual change there exists interannual variation,
showing that 21 cold winters (out of which 4 cases are severe, i.e., 4°C lower than the
climatology) and 9 warm winters, as judged by a temperature anomaly criterion in which 2°C
lower (higher) than the mean in any of the three successive months is defined as a cold (warm)
winter. Following the same criterion the city record shows 8 {10) warm (cold) springs, 2 (2)
hot (cool) summers, and 2 (2) hot (cool} fails. Evidently, even in a tropical marine climate as
in Guangzhou, short-range climatic variation displays noticeable aperiodicity as the reflec-
tion of nonlinear complex.

Feng et al. (1989} reported the fractal dimensionality (d, = 2.3) of the chaotic attractor
of the Guangzhou mean temperature series. Consequently, the dynamic system for the
short—termn change in climate there ought to be described by ai least three dimensions.
Accordingly, something is done with (1), with X', X, and X, denoting the phase space state
variables whose lime—varying evolutions satisfy the dynamic system of the form

ax

—E‘l =a X, ta Kyt ey Xy ta X 4 e X] Fagky 4a, X X, + g X, X3 +a, X3 X,

LA 24 by X2 b, X] @
S Th K B Xy F b Xy T b X boXT T X H b X\ X, H by Xy X, B XX,

dX3 - 2 2 2
-Et——c,X,+c2X2+r.'3X,+c,X,+c5X2 FtogXs e X)X, YogXy X, Heg XX,

It is obvious therefrom that (2} contains both linear terms and quadratic nanlinear terms.
To get a dynamic system able to describe the time—dependent evolution of state variables
X, X, and X,, we have to sel the coefficients in (2} to be unknown quantities, with the vari-
ables, their products and alf the left hand side terms found directly from the time sequences.

Mow, how can we get the information on the state variables? A phase space continuation
is done, by a drift technique, of 1D into 3 D series at time lag t, so that

X0 oxg(n), x(g) 0 xg(3) L emeem xy(ty)
*Xz: xolt; +1), xple, +1), xplty + ) veem x, 2y + 1) )
Xi o xolt, 4200, xpli, ¥20), xg(ey +21) eevems x, {1y + 27)
The first row indicates discrete values of X, in its temporal development, and so does the

second (third) of X,(X,). Thus, these values as particular solutions are put into (2) to find
wnknown coefficients.

III. RECONSTRUCTION OF A DYNAMIC SYSTEM

dx
Put (2) into difference form and it is evident from -2,—!1— of (2) that for X, we have

X, a+D—X,in—1)
2A1

=g, X,(M+a,X, )+ a; X,(n)+a, X (n}+ a X2 (n)

+agXim) + a, X, )X, (1) + ay X, ()X, (m) + ag X, (0) X {n) . (4)




280 Advances in Atmospheric Sciences Vol.11

Put the values of (3) from continuation of the series into {(4) and express in matrix form. Then
the 1hs of {4) can be given as

X ®—x, (1)
d, 241
d, X, @) —Xx,(2
D= . = 2Ar y (5)
ul | xm-2-x,0n—4
B 2Ar i

in which X, (1)=x,(1), x,@)=x,(:,) ,- and Ar=the sampling interval of time. The
known time series length m = 876, of which at least 2 will be lost during drifting, leading
tom, =m—2and M =m, — 1. As a result, the 1hs of (4) can be found and made known, so
can the related variables and their products on the rhs through the use of the sequences sub-
Jected to continuation. For convenience we denote Q as

Q=(Ql-Q2=QJ-Q4thQthQ;;Qﬂ
= (X, X, (.2, (). X2 XX 0.X, (DX, DX, X, DX, (X, ) . (6)
Corresponding to (5), {3) is substituted into (6), yielding a matrix of k columns and
M rows, where k = I, 2, »», 9, Thus,
o le " Qlk

Qs Qn = Oy

2= o

Qw1 Cuz ™ Cun

At this point, the coefficients of the terms of (4) are unknown quantities to be obtained. We
have the coefTicient in matrix form

a=| | . ®

Then, a system of contradictory equations is formulated from (5), (7) and (8) and given in ma-
trix form as

D=04 , {9)

which is then solved by the least square method, i.e., to take the minimum of the error
squared sum R that has the form

R=(D—0A)(D-0Q4) . (10)

Therefore, the regular equation relative to (9) takes the form
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0T04=0"D . an

Therein we denote S = QTQ, where superscript T represents the transposed matrix. From
(11) we have
A=8"'0"pD , 12)

where S ! refers to the inverse form of the matrix S. IT § werc nonsingular, 4 would be
found directly, and if not, according to the procedure shown in Chou (1986).
Similarly, the coefficient matrices B=(4,,b,, -~ b, ) and C =(c,.c,,* ¢, ) are de
ax, dX
termined via ——= 5 and —-= (2), separately, following the procedure shown in (4) through
(12).
IV. CALCULATION RESULTS AMD DYNAMIC MODEL

Table 1 summarizes all the calculations, indicating that some of the coefficients are very
small while others are quite large, spanning two orders of magnitude. It is a common practice
in constructing a dynamic model to only make use of the lerms with higher order. However,
the problem is whether the importance of the terms with their coefficients at different orders is
linked to their contribution to the system’s evolution. In other words, it is unclear that the
terms of greater coefficients contribute mere. The answer may not be affirmative. For this
reason, we examine it in terms of the relative error of each of the terms SR, that is in the
form

=miz[Q /):Q] : (13)

i=1

where O, denotes the i—th term on the rhs of (4) with i =1, 2, «-+ 9, the results given in the
second colymn of the table.

Tade 1. Values of Coefficients {a,. b, and ¢,} of Terms for State Variables (X, X,, and X, }, Respectively, of (2},
with Their Relative Error SR/

emon
rhs
a; SR, b, SR, ¢ SR,
1 -0.051187 | 0.7997 E-01 —0.500012 0.4957 E+00 -0.003155 0.1309 E-02
2 0.473615 0.8791 E+00 -0.000000 0.1075 E-11 -0.469822 0.8904 E+00
3 0.010207 | 0.5912 E-02 0.500012 0.5042 E+00 0.050215 0.8387 E-01
4 -0.018283 | 0.2633 E-D1 0.000002 0.1167 E-10 -0.001B37 0.2165 E—02
5 0.013409 0.1047 E-02 -0.000000 0.7736 E~11 -0.010252 0.6261 E-03
6 0003843 0.2761 E-02 -0.000002 D.1648 E-11 0.011100 0.9836 E-02
7 -0.018910 | 0(.1421 E-02 0.000001 0.1658 E~ 11 0.003354 0.5594 E-04
B -0.024859 | ©.3106 E-02 -0.000002 0.1175 E-10 0.021260 0.2047 E-02
2 0.003212 0.3430 E-03 0.000000 0.1821 E-12 0.01470% 0.9630 E-02

Then, terms of bigger coefficient and variance are singled out from the table to establish
an equation for a dynamic system describing short—range climate variation which has the
form
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ax

Ttl'z —a X ta,X,

dx,

5= b b, (14)
ax

dta =X, o X, Yo XX, ,

where @, =0.051187, a; =0.473615, & =0.500000, b; =0.500000, ¢, =0.469822,
¢y =0.050215 and ¢, = 0.014709.

After setting up this system, we could not help thinking of a well-known model of chaot-
ic dynamics—the system that has been intensively studied by Rossles, viz.,

ax

= = - +

2t (Y+2)
ay

=Y+

at X+a¥

dz _ .,

a =bX—cZ+ZX

His numerical results show that when certain values are assigned to the coefficients ¢ and
b with ¢ evaluated differently, the system will experience bifurcation, leading to chaos.
Interestingly, with X = x,, ¥ = x, and Z = x,, (14) is transformed into

dx

r =—§,Y+a,zZ
%=—51X+5,Y (15)
‘i,—‘f= —E XA EZHEZX

inwhich & =b,,8,=6;,5, =a,,5,=a,,& =¢,,& =c, and ¢, =¢,. Evidently, (15} is
quite similar formally to the Rossles’s system, most obvious being the existence of a nonlinear
term therein in addition to the linear terms. Therefore, we assume that the reconstruction at-
tempted in this paper can be possibly used to describe the nonlinear properties of short range
climatic evolution characterized by monthly mean temperatures.

The reconstruction based on 1D time series is in fact a quantitative study in an attempt to
establish a low—-order model of state variables of our concern so as to construct a certain link
to a large model of very high freedom or act as a “bridge”. For this reason, we attemt to ex-
periment with prediction in terms of (14} in an effert to make assessment of the system.

Following a difference scheme, (14} is put inte difference form as

Xin+1)=X -1+ la, X,(n})—a, X (n)PA:

X,in+ D=X,(n — 1) +[b, X;(n) — b, X, (n)2A1 (16)

X;(n+ )=X;(e — D +[c; X;(n) — c, Xy () + ey X ()X ()RAS .
At this stage our aim is just to investigate the capacity of this system to describe monthly
mean temperature change through predictive experimentation. Without the loss of generality,
prediction is made at Az = 1 for the last phase point of the 3D phase space serics from contin-

uation, with monthly mean temperatures of the 197980 winter as initial values and the re-
sults of April through December 1980 are given in Fig. 2.
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Fig. 2. Experimental results of monthly mean temperature forecasting in April-December 1980,
with », A, [] and  denoting prediction values of X, X;, X, and their average, respectively.

It is quite obvious from this figure that the dynamic system is effective in illustrating the
change tendency of Guangzhou monthly mean temperature. To demonstrate this, analysis is
carried out of errors of the results as summarized in Table 2. Inspection of the system—fore-
casted values in comparison to the climatology and measurments indicates that their mean
absolute error and mean square deviation ate identical. And as far as the mean relative error
and correlation coefficient are concerned, the prediction is even closer to the measurement,
with their correlation much higher than its correlation to the climatic value. Further, the fit-
ting of historical data using (14) shows a rate greater than 80%. Together, all these reveal no-
ticeable advantage of the system presented in forecasting short—term climatic evolution.

Table 2. Error Analysis ol Experimental Predictions

type " prediction vs prediction vs
climatology measurement
MAR 0.932566 0.932566
MRE 4.124365 0.051586
MSD 1.276853 1.278653
CcC 0.372751 0.787630

= MAR =mean absolute error, MRE = mean relative error,
MSD =mean square deviation, and CC = correlation coefficient.
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V. CONCLUDING REMARKS AND DISCUSSIONS

From the foregoing one can sec that the reconstructed dynamic system is nonlinear that
serves as a model for exploring short-range change in tropical climate with the aid of month-
ly mean temperature as the climate variable. Though only one nonlinear guadratic term is
available in (14), nonlinearity is clearly displayed that can describe the features, i.e., the evolu-
tion is periodic but nonrepeating and marked by certain complexity.

Our target is to connect the reconstructed dynamic system built upen 1D time series to
forecasting, with a preliminary result presented here. Error analysis of the findings indicates
encouraging merits of the system.

Moreover, lwo points concerning phase space continuation analysis are of note: i} the
length of the data used, m, is closer to the needs of providing the minimum limiting condition
on mproposed by Ruelle (1990), 2logym»D, or m»10°"? with D being the
dimensionalily of the phase space; ii) in doing continuation from LD inte multi—dimensional
series, the selection of time lag 7 is highly important. In view of the not too long dataset
adopted and for convenience in experimenting t =1 is assumed. The calculations by back-
ward correlation show that the coefficient r = 0.07191 (0.00159) at =1 {3). On the whaole,
hence, 7 = | meets the needs of mutual independence of the state variables, Of course, t=3
will do as well.

Finally, mention should be made of the fact that the reconstruction of the dynamic sys-
tem based on the phase space centinuation of 1D time series of climatic observations with
manthly mean temperatures as the variable differs {rom the scheme of Huang et al. (1991) in
which the known Lorenz system was resolved and retrieved, with the examples illustrating the
retrieval from the output of the known model rather than in situ observation. Evidently, of
more practical intervest is the effort at getting acquainted with the reconstruction through
phase space continuation of 1D time series of all kinds which come into use most frequently in
our daily routine and research.
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