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ABSTRACT

This paper proposes a new two—step non-—oscillatory shape—preserving positive definite finite difference
advection transport scheme, which merges the advantages of small dispersion error in the simple first-crder upstream
scheme and small dissipation error in the simple second—order Lax—Wendroff scheme and is completely different
from most of present positive definite advection schemes which are based on revising the upstream scheme results.
The proposed scheme is much less time conspming than present shape—preserving or non—oscillatory advection
transport schemes and produces results which are comparable to the results obtained from the present more compli-

cated schemes. Elementary Lests are also presented to examine the behavior of the scheme,
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I. INTRODUCTION

In numerical modeling of atmospheric phenomena, it is often necessary to solve the
advection equation for positive definite scalar functions. Processes associated with water in
the atmosphere are particularly difficult to model accurately. There are very large horizontal
and vertical spatial variations in the moisture field and very strong and small—scale sources
and sinks of moisture associated with phase change.Yet because it is so important both in va-
por and in cloud forms and because the heat release associated with phase change can be
large, it is critical to model reasonably and accurately the processes which affect the distribu-
tion of water.

Accuracy is a primary requirement for any numerical algorithm. However, it is impor-
tant to note that high formal accuracy as evaluated from a Taylor—series expansion of the
algorithm does not always imply an accurate solution to a particular problem. There are im-
portant physical situations (shocks, and fronts for example) where the phenomena to be mod-
elled are (quasi—) discontinuous, and the evaluation according to Taylor—series expansion er-
ror estimates is relatively meaningless. Moisture is quasi—discontinuous field as compared
with other atmosphere fields, so accuracy for moisture field might have different implication.
Using second—order or high—order—accuracy advection schemes to solve moisture advection
straightforwardly can lead to significant erron¢ous dispersion and cause some difficulties be-
cause negative values arise in the solution.

Numerical methods with shape—preserving (SP) properties are designed to ensure that
certain properties relating to the shape of the solution of continuous equations are preserved
in the discrete solutions. There are 2 variety of names (i.e. positivity, monotonicity, and
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non—oscillatory) for properties which are in principle equivalent to the shape—preserving
property. For a scalar field undergoing pure advection, new maxima or minima cannot devel-
op, so extremes are limited to the value they had at a previous time. It follows that fields
which are initially positive everywhere cannot become negative. The well shape—preserving
scheme can reduce the dispersion errors, and also reduce the non—physical charactor of solu-
tion.

Care about the positiveness of the solution leads to the use of upstream difference or oth-
er low—order schemes (Soong and Ogura, 1973) which produce no dispersive “ripples” but
suffer from excessive numerical diffusion. In the last twenty years, many schemes have been
devised for a possible resolution of this dilemma. Especially, Smolarkiewicz(1983,1984,19886)
used a predictor—correcior sequence to the upstream scheme so that the corrector reversed the
effect of the implicit diffusion in the upstream predictor and Smolarkiewicz (1990) perfected a
monotone version of the scheme which merges the flux—corrected transport methodology of
Boris and Book (1976) and Zalesak(1979) with the prodictor—iterative—corrector scheme.

Notwithstanding the success of those methods, many modellers still employ the simplet
first—order upstream scheme, which has excessive numerical diffusion, or second—order
Lax—Wendroff conservative method, which introduces difficulties because of negative values,
due to computational ease and cost (Takacs, 1985). Any useful numerical method must be
simple, flexible, and inexpensive in the application to realistic problems. Almost all of present
resultful positive definite advection schemes are complicated and computer—time expensive in
different degrees.

This paper presents a two—step shape—preserving advection scheme (hereafter, TSPAS)
which is completely different from other predictor—corrector schemes. As it will be shown lat-
er, the scheme is much less time consuming than other shape—preserving or nen—oscillatory
schemes and produces results which are comparable to the results obtained from other more
complicated hybrid schemes.

In Section II the scheme and its development are presented. Section III contains the
proof of the consistency, conservation, positivity, shape—preservation and stability of the
scheme. Section 1V presents the results of elementary tests. Section V concludes with a discus-
sion.

I1. THE DEVELOPMENT OF THE TSPAS

The equation to be solved is the continuity equation describing the advection of a
nondiffusive quantity in a flow field, i.e.,

oF —
SV vP=0, o))

where F(x, y, z, t) is the nondiffusive scalar quantity, V'=(u, v, w) is the velocity vector,
and x,y,z,fare the space and time independent variables. For simplicity the
one—dimensional case of (1),

S+ =y @
X

will be discussed. As it will be shown later, the multi~dimensional case is a simple generaliza-
tion of the one—dimensional results.

Considering a transport shape—preserving rule (hereafter, TSPR): New extremes for a
scalar field undergoing pure advection should be limited to the values they had at a previous
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time, which is used to define the implication of shape—preservation in this paper, and the nec-
essary finite—difference accuracy for most good continuous field, we propose a hybrid
advection transport methodology which uses high—order—accuracy scheme in regions where
the transported flow variable is smooth and uses upstream scheme in the vicinity of a few
mesh points where the shape—preserving rule is broken by the high—order—accuracy scheme.

Considering computation ease and simple, second—order Lax—Wendroff conservation
scheme (L—W—S)

4
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is chosen as the high—order—accuracy scheme.
Based on the scheme (3) and upstream scheme (U—-S})
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we propose the following two—siep scheme (TSPAS)
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here ¢ is a small value, e.g., 107", A, <0 means that first predicting value at ith point satisfies
the TSPR, i.e.

F‘:-lmins-F: slv?mﬂx -
A; 2 0 means that first predicting value at ith point violates the TSPR, i.e.
F,-‘ %Frmm or F,. ?F?max B

Formally, the coefficient formulas (7)—(15) are very complex. In fact, Eq.(5) is equal to
the scheme (3) but with larger time increment, and Eq.(6) is a formal upstream scheme, or a
hybrid scheme which is same as upsiream scheme @) at A, >Qor 4,,, >0and 4,_, >0,
and same as Lax—Wendroff scheme (3) at 4, 0,4, | <0and 4, , <0, and a combina-
tion of scheme (3)and (4)at A, <Obut4,,, >00r4,_, >0.

The designing methodology of present positive definite advection schemes is always
based on correcting or revising the upstream scheme results. The proposed schemes (TSPAS)
{5) and (6}, which use upstream scheme only for a few mesh points where the TSPR. is broken,
are a simple two-step procedures and are completely different from the Smolarkiewicz
scheme and other two—step predictor—corrector schemes. The scheme has second—order—ac-
curacy except “first—order—accuracy” near same gquasi—discontinuous or sharp gradient
points. The consistency, conservation, positivity, shape—preservation and stability of the pro-
posed scheme will be proved in next section.

1L CONSISTENCY, CONSERVATION, POSITIVITY, SHAPE-PRESERVATION AND STABILITY

For transport problems, it is convenient to characterize the differences between different
numerical schemes in terms of the following desirable properties of transport algorithms: ac-
curacy, stability, consistency, conservation, positivity, shape—preservation and compultational
rationality. :

The proposed scheme has quasi—second—order accuracy and is sufficiently simple as
mentioned in last section.

The consistency of the scheme can be obtained because Eq.(6) approximates with the
second—order accuracy equation

U+ Lun=Lximi), (16)
where Kimp = 0.5 (Ax|@| — Ate®). When Ax, Ar™0, Kimp™0, Eq.(16)> Eq.(2), which
means that the scheme has consistency.

It is easy to understand that for the scalar quantity transport problem, the positivity and

mass conservation also imply stability because the total quantity } F; Ax can be defined as a

norm function.
From Eq.(6), it can be shown

F'Ax =Y F Ax +0.5At0] L(F5, | + F) —ul(F] + Fp)l
2 i i J’+2 I+1 I 2 1
+osadlal}, L - Fp - lallet - R, a”n

where fis the total grid number. When the last two terms of Eq.(17) are zerc at certain
boundary conditions (cyclic boundary condition for example), the scheme exists conservation




No.4 Yu Rucong 483

property
! !
S Ax=YFAx . (18)
The positivity and shape—preservation of the scheme can be shown as follows:
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(2) A;>0,0rA,,, >0and 4, |, >0, thchH% =C,.1=1
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The scheme is equal to upstream scheme, positivity and shape—preservation exist under
the following condition,
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It is abviously that non—oscillation shape—preservation, positivity and stability exist un-
der condition (19) and

2 2

2 .
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In general, in order to obtain minimized dissipation errors, we replace formula (2¢) by
2 2 .
f= maut;(2 o 1oy ) 20)

in the scheme (6).
The shape—preserving property and inexpensive computation of the scheme will be
proved further in the following section by elementary tests.

IV. ELEMENTARY TESTS

To examine the behavior of the proposed scheme a series of elementary tests and
simulation tests for real atmospheric problems have been done. Resulis for a
one—dimensional step profile translation and a two—dimensicnal solid body rotation will be
shown only in this section due to limited space.

One of the most common ways of measuring the telative merit of a given numerical
scheme for advection is to analyse the scheme’s dissipation and dispersion properties. In this
paper, three kinds of error measurements were taken to represent the total error, the dissipa-
tion error, and the dispersion error. The total error was defined to be the mean square error
for the experiment given by

Eror=%;(Fr_Fn)zs 2D

where Fy is the true solution, Fy, is the finite—difference solution, and M is the total number
of grid—points. Because of arithmetic mean ¥, = F. for conservation scheme, Formula (21}
can be rewritten as

Eror =34 LWy = Fp) =y = Fp)f

={a(Fr)—o(Fp)I* +2(1 — prp)o(Fr)o(Fp), (22)
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o(F)= [+ SF=-F?,

3 LFr — F)s —Fa)
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are the variance of F and the correlation coefficient between F. and Fp, .
The dissipation and dispersion error are defined as

Episs =[o(F7) —o(F ), (23)
Eppsp =21— Prp Yo (F)o(Fp), (24)

where

and pypp =

respectively.
(1) A step profile testing

Figs. 1 and 2 show the results for advecting one—step initial profile through two and ten
translations of the 70—grid—point domain using cyclic boundary conditions for the case of
one—dimensional uniform flow (1= const) with Ax = 1.0, ¥ = 1.0, Ar = 0.7 (One translation is
equal Lo 200 time—steps). In each figure, the initial field and three numerical results for up-
stream scheme{4), L—W scheme (3) and the proposed scheme (6) are shown.

Figs. | and 2 indicate that the proposed scheme has well shape—preserving property with
non—oscillation, positivity and small numerical diffusion, and Table 1 indicates that the pro-
posed scheme merges the advantages of small dispersion error in upstream scheme and small
dissipation error in L—W scheme and has the smallest total errors.
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Fig. 1. (LEFT) and Fig. 2. (RIGHT). The results for advecting one—step initial profile throngh
two and ten translations. {a) Initial field; (b) U=S results; (c} L-W—S results; (d) TSPAS results.
The increment for each vertical scale and horizontal scale are 0.1 and 1, respectively.
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Table 1 shows the total errors, the dissipation and dispersion errors of the three numeri-
cal results for the step initial profile after two, five and ten translations.

Table 1. Comparison of Numerical Errors for a One—step Profile Translation

E T 2nd translation 5th translation 10th translation

X
s Eror Episs Epise Eror Episs Epise Epor Epss Epise

U-5 (6191072320 % 1072(2.98 x 1072|113 % 107" [2.40 % 10°2[1.92x 1077 1,82 % 107! [1.74 % 107" (8.29 x 107*

L-W-5 |3.63x1072|6.30 x 107*[3.56 % 102 [4.70 < 107[1.01 x 107 |4.60 x 107%{8.23 x 107%{1.50% 107 [8.10 % 1072

TSPAS |2.15x 10734.20 % 107%1.73 % 1072300 1072{7.40 % 1077 2,35 % 1072|381 x 1073] 1,34 % 1072 2.48 x 1077

notes: T=Translations, K = Kinds, E = Errors and §=Schemes

(2) Two—dimensional solid body retation testing

In order to further demonstrale (he shape—preserving property and small diffusion of the
proposed scheme and have a comparison with Smolarkiewicz scheme and other positive defi-
nite schemes, the two—dimensional solid body rotation test was chosen as
Smolarkiewicz{1983,1984,1986,1990). The grid space is (100Ax by 100Ay), Ax = Ay =1, At
=0.1, and the constant angular velocity w=10.1. The velocity components are ¥ = — w(y
—y,yand v =ol(x — x,) where (x,, ¥, ) =(50Ax,50Ay). [n this circumstance, one full rota-
tion around the point (x_, y,) is equivalent to about 628 iterations (i.e., time steps). The ini-
tial condition was assumed in a form of a cone with base radius 15Ax = 15Ay and maximum
value 4.0 in point (X, , Y,,} = (75Ax, 50Ay) (Fig. 3a). In all cases the same boundary condi-
tions were used. The first spatial partical derivalive in the normal direction was assumed to
vanish at the outflow boundary. The undisturbed initial value of the field was assumed to ex-
ist at the inflow boundary.

The multi—dimensional scheme of the proposed scheme is a simple generalization of the
one—dimensional formulae (5) and (6), which may be used in the time—spliiting or the com-
bined form optionally. In the time splitting form the stability and consistency of the scheme
are a consequence of the stability and consistency of the one—dimensional scheme. However,
because of the data transfer, this method is more time—consuming and expensive than the
combined scheme, so the latter was chosen in this section. 1n two—dimensional space, when
the scheme is applied in combined form, the scheme may be written as

Fn‘:f SF?J_B Ax[“H J(F"HJ * r'J)_u?—lJ(Fn +F" ‘-’)]

+52Ax[‘ 2|1+ ,]Ax( +1,)_Fn )_l Ill_i'}Ax J—F‘:"_lj)]
_ﬁ_[v?J+]—(F:'j+l +F?,,-) ,,——(Fn +F,,,|—1)]
+ﬁ2A [l 2|IJ+— I(F:,i+l _F':J |VZ!1J-‘A ( "J’l)]’ (25)

Fl= i ——[u,+ .,(F"H,, + iJ)_u?—%j(F:.i +F’i’—l,j)]

i

[|“|.+ ,,(Fnﬂ,, ij)_li‘.l?—%,,'(-’:f,; _F:‘I—u)]
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2Ay[vu+ ( i+ +F:J)_V|J——(Fn +Fu—l)]

+E[Ivlz‘ﬁ%(f?,-+.— )= Bl Fr — Fipm i) (26)

where the coefficient formulas are very similar to (7)—(15) (neglected), the shape—preserva-
tion, consistency and stability conditions are also the sufficient stability conditions of
two—dimensional upstream scheme which are

[#l7,1 JAI |u|w1m

mlax( A Ay IESE D! 27
and
P (28)
where
fulf_t A lu I,__JA: lulfy 1 80 u 7,1 1,8t
g = max(—g (= e (),
|y |u+1A£ Iul,ﬁlA: |v|;",_1m Iul,"_,AlAz
(- Va0

Ay Ay

It is worth noting that L—W scheme in the two—dimensional combined form has neg-
lected cross—derivative term

gAr;"uv ,. .

4AxAy Fis i+t +F_ -1 —Fieig- _F:"IJH):

w=025(u;,1 Y +u,_4d +HU+- +“47—)

V025001, vty vty ), 29)

and as will be shown later, introducing the cross term will lead to better shape—preserving so-
lution.

In addition, because Lhe values between adjacent time steps have small oscillation due to
numerical errors we modify

F?‘f-uuu min(F; T +'|,}’FT—|J’FU+|’F’[:] W h (30)

F"mu = max(F; i ”1,,,F" 1 ,,r+]! —|)~ 31)
10

Fimin = min{Fy, F ;. F]_ U,F:'JH,FTJ_,,F"_ min }, (32)

Fromax = max(Fy, Foy ) Fr o Fly e o Foy 1, Fry o), (33)

in order to acquire minimized numerical diffusion.

Fig. 3 shows the initial condition for this experiment and the numerical solution of the
proposed scheme after six full rotations (i.e. 3770 iterations). Fig. 3a is the initial condition,
Fig. 3b is the result without cross term and with no modified extreme limitations (30) and
(31), Fig. 3c is the same as Fig. 3b except including cross term (29) and Fig. 3d is the same as
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Fig. 3. Initial condition and numerical solutions for three versions of TSPAS uvsing solid—body ro-

tation. The reference spikes in the upper—right and the lower—left corners represent the initial— and

minus half of the initial-height of the cone: (&) initial field; (b} withont cross term and with no

modified extreme limitation; (¢} the same as (b) except including cross term; (d) the same as (c) ex-

cept with modified extreme limitation.

Fig. 3¢ except with modified extreme limitations (32) and {33). The maximal values of the
presented solutions are 2.45, 2.5 and 2.8, respectively.

Table 2, shows the numerical error comparison and maximal and minimal values after
six full rotations for three schemes as in Table 1. The conclusion is also the same as that in
Table 1. The maximal values of the TSPAS and L—-W—S5 are very close, but the TSPAS is
positivity and non—oscillation, i.e. better shape—conservation.

Furthermore, it has been numerically proved that the solution of the proposed scheme
with a large constant background valve is the same as that in Fig. 3 with a zero background
{Figures not shown), which is easy to know from the TSPAS formulas and its shape—pre-

serving processes.

Table 2. Numerical Comparison for Solid Body Rotation

Eror Episs Epise MAX. MIN.

U-s 1.52x 107" 1.27x 19 2.55% 107 0.27 0.00
L-W-8 768% 1072 5.37x 107 7.14% 1972 295 .67
TSPAS 6.24x 1072 1.45x 107 4.80x 107 2.80 0.00
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V. DISCUSSIONS AND CONCLUSIONS

1. A two—step non—oscillatory shap—preserving positive definite advection transport
algorithm was presented. The TSPAS merges the advantages of small dispersion error in up-
stream scheme and small dissipation error in high—order—accuracy scheme.

2. In comparison to the flux corrected transport (FCT) methodology, originated by
Boris and Book and generalized by Zalesak, and the nonoscillatory option of the
multidimensional positive definite advection transport algorithm (MPDATA) developed by
Smolarkiewicy, the proposed scheme (TSPAS) produces comparable results with much less
computer—time consumption. The computer—time consumption of the FCT scheme is about
eight times of that required by upstream scheme, and the MPDATA scheme is more than ten
times required, but the computer—time consumption of the proposed scheme (TSPAS) is only
about four limes of that required by upstream scheme. All maximal values of solid body after
six full rotations by the TSPAS, FCT and MPDATA scheme are about 70—80 percent of the
initial maximal valye. In addition, in comparison to the total-variation—diminishing (TVD)
scheme developed by Harten and other positive definite schemes (including those without
non—oscillatory property), the proposed scheme (TSPAS) produces much better result with
almost the same computer—time consumption. The computer—time consumption of the TVD
scheme is about three times that required by upstream scheme, which is the least time con-
sumption scheme compared with other positive definite advection scheme except upstream
schemes, but the maximum of the solid body after six full rotations is only 40 percent of the
initial maximal value.

3. The TSPAS can be generalized, the L—W scheme can be Replaced by other high—or-
der—accuracy conservation schemes as mentioned in Section IL.

4. The TSPAS is also applicable to non—quantity field advection, because the scheme is
the monotonicity preservation but only sign preservation.

The author is grateful to Professor Zhang Xuehong for his helpful discussion and the English polishing,
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