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ABSTRACT

In this paper, equations of atmospheric and oceanic dynamics are reduced to & kind of evolutionary squation in
operator form, based on which a conclusion that the separability of motion stages is relative is made and an issue that
the tractional splitting methods established on the physical separability of the fast stage and the slow stage neglect the
interaction between the two stages to some extent is shown. Also, three splitting patterns are summed up from the
splitting methods in common use so that a comparison between them is carried out. The comparison shows that only
the improved splitting pattern (ISP) can be in second order and keep the interacticn well. Finally, the applications of
some splitting methods on numerical simulations of typhoon tracks made clear that ISP owns the best effect and can

. save more than 80% CPU time.
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1. INTRODUCTION

Computational Geophysical Fluid Dynamics is a new and developing branch of cross
discipline. One of its major research objects is the large scale atmospheric and oceanic mo-
tions. Usually, the equation of atmospheric and oceanic dynamics used for numerical
simulations or for numerical predictions belongs to the nonstationary equation set of
geophysical fluid dynamics. For example, the barotrepic shallow water equation set des-
cribing the atmospheric motion approximately is:
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The equation set includes both the slow—developing Rossby waves and the fast—changing
inertia—gravitational waves, and has a remarkable feature that the time for numerical integra-
* tion of it is very long and in general hundreds of thousands of integration steps and more are
needed. Thereby, the stability and the time—saving effect of the computing scheme to the
equation become two key issues for successful numerical computations, because they directly
" affect the cost and the time effectiveness of predictions. In order to resolve the stability issue,
a species of numerical methods that are called the perfect energy conservative difference
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methods have been developed successfully in Institute of Atmospheric Physics, Chinese Acad-
emy of Sciences, which are introduced in detail in some relevant references®. To resolve an-
other issue, many economical schemes and methods have been established in recent years and
the splitting method is one of the most effective economical methods.

On splitting method, the Russian mathematician Yaneko et al. {1967) made a construc-
tion in early time. He constructed the split—time—interval method that was generalized and
applied to the numerical computations of atmospheric and oceanic problems, and later con-
structed by Marchuk {1982), the former president of Russian Academy of Sciences. One of
the earliest works in this field in China refers to Zeng et al. (1980). Following the appearance
and development of parallel computers, paralle] algorithm becomes a popular subject, which
includes an important method i.e. split—operator method. The splitting method we consider
here is also a split—operator method. It is mainly suitable for series computers, but it is not
difficult to generalize it to parallel computers and more CPU time is expected to be saved.

I PHYSICAL FUNDAMENTALS OF SPLITTING METHOD

The splitting method we study is different from the genera! split-operator methods, al-
though it is a split—operator method, it is implemented according to separability of physical
states. Therefore, not only this algorithm would be 2 mathematical method but also have
clear physical significant, The motion described by Eq.(1) includes the adjustment stage and
the development stage. These two stages can be split into time scale, which is put forward ear-
ly by Ye et al. (1988) and Zeng et al. (1980). For large—scale atmospheric motions, the charac-
teristic time of the adjustment stage is 10's and that of the development stage is 10°s (Ye et al.,
1988). Due to the difference between two kinds of characteristic time, Eq.(1) can be separated
into two equation sets. One is mainly to describe the adjustment stage and a short time inter-
val is selected for the time integrations. Another is mainly to describe the development stage
and a longer time interval is chosen for the time integrations. By this way, all the integrations
for splitting method may decrease in cost more than that for non—splitting method.

ITi. RELATIVE SEPARABILITY OF FAST STAGE AND SLOW STAGE

Equations of atmospheric and oceanic dynamics can be reduced to the following evolu-
tion equation in operator form:

aF
Fn +£F=0, )
where the operator £ can be split into the operator £, denoting the fast stage and the op-
erator £, denoting the slow stage: £ = £, + £,. Suppose that F is a function of the time
variable r, then Eq.(2) becomes

4ar

s+ m=0. 3

Expand F(r) in Taylor series at the time to

®F Zhongzhen, Wang Bin and Zeng Qingeun (1993), Perfectly Energy—Conservative Difference Meth-
ods and Their Applications (submitted to Some Progress in New Technigues for Numerica! Predictior,
Meteorological Press, Beijing, 1994 (in Cpinese)).
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dF d&°F
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where At = ¢ — ¢°, and the following expressions arc obtained:

dF

E=_£1(F)—£2(F), (5
& d£ (F) d£,(F) d8 d£
Tr 2 0+ 2,0+ 2 g, 0+ 2 8.
= R, + r + ra + Rz . (6)

It is derived from substituting (5} and (6) into (4) that

2
Ft)=F +At( (F)+ .£1(F)) +5‘—(R° +RS 1 +r2)+ 0L . 0

Exp.(7) shows that the two stages can be separated only when the small terms with second or-
der or higher are truncated, and they can not be split completely if the second order term in-
cluding the interaction of the two stages is left.

IV. ESTABLISHMENT OF AND COMPARISON bETWEEN THREE SPLITTING PATTERNS(D
From Eq.(3), three splitting patterns can be constructed
(1) CSP (Conservative Splitting Pattern)

d£+£(1’) 0, PP=F
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to which the general solution is
F'=P+Q-0°=Q+P-P, )
deatly, (F* )’ =F°, (F") =@".
(2) ESP (Economical Splitting Pattern)

d';: (FT)+EF)=0, F) =@ rel_yn] (10)

(3) ISP (Improved Splitting Pattern)

4P | ¢ (P)+ £,(F)=0, P°=F
dt teft,,t] (i
£+£2(F')—£2(F")=0, Q° =P

F"=P+Q-Q°=0Q+P—P

{DWang Bin, Ji Zhongzhen and Zeng Qingeun (1993), A Preliminary Study on the Theory of Splitting
Method (submitted to Chinese Journal of Computational Mathematics).
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Fig. 1. 72—hour Prediction of 7908 Typhoon Track (x) from splitting scheme (b} from
noo—splitting scheme solid line: observed track broken line: simulated track (b) from non~split-
ting scheme solid line: observed track broken line: simulated track

Now, compare the three splitting patterns.
From the Taylor expansion of F™ :
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it can be proved that ISP is in second order while CSP and ESP are in only first order, because
of for CSP
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for ESP
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(49
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and for ISP
SRR N LRI
2 *
("d‘:; ) 7= (‘“:' £ (P)+d£' £,(F)+ ]f’ £, )+ Cetp e 09

=R +r2 +RS +12.

The splitting patterns are applied to simulate typhoon tracks so that their computing ef-
fects are examined. It is testified in examinations that ISP is the best and it saves 80% CPU
time (refer to Fig. 1).
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