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ABSTRACT

The coagulation rate of a dilute polydisperse acrosol dispersion of particles is considered for small Peclet
number, which provides a measure of the ratio of the relative shear—induced metion to Brownian motion between
two rigid spherical serosol particles. The asymptotic form of the relative velocity of two unequal particles immersed in
a simple shear flow when they are far apart is obtained. Using a singular periurbation method, a two term expansion
for the dimensionless coagulation rate (Nusselt number) as function of the Peclet number is developed. In the limit of
the radins of ong of the two spheres becoming small, the result agrees with the dimensionless mass transfer rate to an
aerosol particle at small Peclet number.
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LINTRODUCTION

We consider in this paper the coagulation rate of a dilute polydisperse, statistically hom-
ogeneous aerosol dispersion of small rigid spherical particles. The particles have relative bulk
convection due to simple shear ambient flow. They are alse in random motien due to
Brownian thermodynamics. The particles exert attractive van der Waals forces on each other,
and two particles which come into contact through the action of this force form a permanent
doublet. The rate at which the aerosol suspension becomes coagulated is in large part deter-
mined by the rate of doublet formation, and it is this quantity that we seek to determine. The
effect of weak shear—induced motion on Brownian coagulation is found by means of a
two—term expansion for the dimensionless coagulation rate (Nusselt number).

The method of calculation involves use of the pair—distribution function p;(¥), and a
singular perturbation technique. Near the test sphere i (the inner region) Brownian motion
balances the interparticle force — van der Waals force — and the relative shear—induced mo-
tion between the test sphere i and a sphere j is negligible when the Peclet number is small.
However, far from the test sphere i (the outer region) the relative shear—induced motion is no
longer small and must be taken into account. Then in the outer region Brownian motion bal-
ances the relative shear—induced motion, and the influence of interparticle force is negligible
owing to its rapid decay. Thus, an expansion in terms of Peclet number, Py, for p; (7) is not
valid for large distances of sphere j from sphere / (inner expansion). It has therefore to be
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matched with a separate expansion which is calculated in the outer region {outer expansion).
The method of matched asymptotic expansions is then used. Using this method, van de Ven
and Mason (1977) calculated the case of weak shear—induced / strong Brownian motion co-

agulation rate of a monodisperse dispersion as far as the second term of order P:,’ 2 and

Melik and Fogler {1984) calculated the case of weak gravity—induced / strong Brownian mo-
tion coagulation rate as far as the second term of order P,,. Wang and Wen (1990) cakulated
the same case as Melik and Fogler as far as the fourth term of order P; . The prupose of this
paper is simply to gencralize the analysis of van de Ven and Mason (1977) from the case of a
monodisperse dispersion te the case of a polydisperse dispersion.

The basic procedure of the method of matched asymptotic expansions used in this paper
is the same as the one described by van Dyke (1975). For a detailed description of the method,
the reader is referred to van Dyke (1975). It is of interest to note that the problem of coaguia-
tion has some connection with the problem of mass transfer. The result of this paper agrees
with the mass ttansfer result, when the radius of sphere j approaches zero.

II. THE STATEMENT OF THE PROBLEM

For a dilute dispersion of small spherical particles in a fluid subjected to Brownian mo-
tion, interparticle force potential and forced convection, the governing equation for the
pair—distribution function p;(r) which represents the probability in a unit volume of finding
the centre of particie j at the position 7 relative to the centre of the test particle { is (Wen and
Batchelor 1985)

op —Y = o, = .
e vy {7; —DU'V(ﬁ)pij—Du‘vpﬂ}=0, @

where ¥, is the relative shear—induced velocity, Dy is the relative’ Brownian diffusivity
tensor, @, is the interparticle force potential (here is the van der Waals attractive potential
for the case of rapid coagulation), k the Boltzmann constant and T the absolute temperature
of the fluid. _

Since the dispersion is assumed to be dilute, the rate of conversion of singlets into doub-
Jets is not too rapid, and the interparticle potential satisfies the requirements poinied out by
van de Ven and Mason (1977) and by Melik and Fogler (1984), (note that the van der Waals
potential just satisfies these requirements), a steady state can be approximately reached in the
initial stage of the coagulation process. Thus, Eq. (1) reduces to

o o -
V- (Fy oy~ By - Vgt )py —By - py ) =0 @
and the boundary conditions are (Wen and Batchelor, 1985)
py=0 at r=a ta, (3
p; 0 a8 7w, @

where a, and g, are the radius of the sphere { and sphere j respectively.

We consider a set of Cartesian coordinates, the axis Ox° is in the direction parallel to
the ambient simple shear flow velocity U™, Oy " is perpendicular to the zero velocity plane
of the ambient flow, so that the ambicnt flow velocity U~ is expressed as

T =Iy" 7, )

T
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where T is the shearing rate of the ambient flow. We now nondimensionalize Eq. (2) and the
boundary conditions (3), (4) by choosing (e, + a,) /2 as the representative magnitude of »,
DY as the representative magnitude of D, which is the value of the relative Brownian
diffusivity as r—>00, and ['(a; + ;) / 2 as the representative magnitude of ¥, . Then Eqs. (2),
{3), (4) and (5) arc given in dimensionless form by

R e R ) ST AT PP
py=0 at 5=2, ™

2,0 w5, ®

T=y7,, )

where §'= 27/ (a, +a;) and s =| 7, P, is the Peclet number and P, = Ia, +¢,)" / 4D},
V,=2V; /T, +a,), U, y, xarc the dimensionless ambient velocity and the
dimensionless coordinates.

The dimensionliess relative Brownian diffusivity tensor is given by (Batchelor, 1982}

b, _ 37 - _¥%

B-%% = G(s);-._,— + H(a)(l -?—), (10
where the longitudinal scalar function G{s) and the transverse scalar function H(s) are known
functions of s from low—Reynolds~—number hydrodynamics (Jeffrey and Omnishi, 1984), and
have been calculated for two unequal rigid spheres by Batchelor and Wen (1982). In this pa-
per only the far field asymptotic forms of G and H are needed to be known explicitly. Substi-
tuting the far field asymptotic expression of the mobility fuaction (Jeffrey and Onishi, 1984)
into the expression of G and H given by Baichelor (1982), we have

G =1 +E;'~‘ +0(s7h, (an
H®=1 +% +0(7Y, (12)
where
i o __BA
G, =2H, YT 13)

Here 4 is the size ratio of the two spheres, 4 =g, / a;. Only the case of rapid flocculation is
considered in this paper. The interparticle force potential is thus dominated by the atiractive
van der Waals potential and the retardation effects are neglected temporaily in this section.
Then, @, is given by (Hamaker, 1937)
A 81 81
O, =—= +
Y 5[(52—4)(l+.1)2 s (1+ 4 — 41— 2
W Gk ) (6. ) &
+ , 14
‘m‘2(1+1)1_4(1_‘1)2] ( )
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where A is the composite Hamaker constant. From (14) it can be easily shown that the far
field asymptotic form for @, is (Wang and Wen, 1990)

: 1024 42" 1 -
O =~ G pF ¢ TO6 . (15)

M1, THE ASYMPTOTIC FORM OF ¥ AS s—+00

At first, the particle j is assumed to be so far away from particle i that they move
separately in the ambient flow with no hydrodynamic interaction. Then the velocity of sphere
7 is the same as its local flow. The velocity of spherej relative to sphere i is then

Vi =Ty 2, . (16)

In the second place, we consider the leading term of the hydrodynamic interaction be-
tween the two particles. Suppose that only particle i exists in the ambient flow. From Eq. (12}
of Wen, Zeng and Wang {1994), the leading term of the modification of the existence of parti-
cleiis of order r™ ~%:

avro o Sl 1 intesinzez, +0( 4 {an

’ AL+ *
If particle j is at the position ;'—: its velocity relative to the space point which coincides with
the centre of the particle i is ¥, + AV, ). Furthermore, particle / itself is moving relative

to the space point due to the existence of particle j in the flow. Similar to (17) its velocity is

_SaTi 1

Ty 7 sin’ Bsin2¢e, + O(s ~*). (18)

AV~

Thus, as s—~oc the velocity of particle j relative to particle i is

_ 2
v, =ye, -1 31 jg;i 1 sin*6sin2g, +0(s ™). (19)

This result agrees with a recent more detailed deduction given by Wang (1992). Similarly, fur-
ther terms can be found out. However, in this paper it is sufficient to know that the second

term of the asymptotic expansion of F_",-J- as s—o0 is of order s ~* and its divergence is of or-
ders ™, ie.

TV, =064 20

Tv. THE CONSTRUCTION OF THE ASYMPTOTIC SOLUTION
It can be shown that the perturbation problem of Eq. (6) with the boundary conditions
(7) and (8) is a singular perturbation problem. The non—uniformity region is s~s.
=0(P;'’*). To handle the problem in this region, we choose the following contracted vari-
able .
p= P,-'f 2 . cn
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as the outer variable and we denote p; by 7, in the outer region. Then, the outer equation is
given by ' ’

D, . D " TR '
v-{;ﬁ,—-V,pﬁ—EE%-v,(#)pq—rupﬂ}w. @2)

The inner equation is (6). The inner region and outer region solutions are assumed to be of
the forms

2y (= gr‘"’ @@, 3)
D= ; ™ (&py @), 24)

respectively, where ¢ is the perturbation parameter, e=P,, and ¢®(g) and {™(¢) are
asympiotic sequences with

Dig)=1, (25
The boundary conditions for p{ (7) and 5, (7) are
PP =0 at s=2 (26)
A1 as pTw, (278)
fif,”"’o as pTew for n22 (27b)

These boundary conditions are insufficient to uniquely determined p{ and p%’. However,
additional conditions at s-+oc and p—0 are furnished by maiching the inner and outer expan-
sions in their common domains of validity.

Following a procedure similar to that used in Wang and Wen (1990), the first two terms
of the inner and outer expansions are found to be

M~y | g _ e
Py =e [1 ZC.L 760) ds], 28)
PP =2CsBeryy, (29)
Py =1, (30)
P =260, @an
and )
P=py2 O=g  P=p72 (32)

where C,, is given by

b me—oui’k!‘d‘} -t -
=1, 563 : oy

B, is given by

ﬁu=_l_"'°°_g.f_2[l 1 ]_0.914 (34)

—2‘]/1 ’
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C" is given by

- 1 @ ds &~ ".VS) 52y 52
& = I _ F 47
7t e $¥2 1 2.1/2 P 1 + 45 ; @33)

(l+l—2-s2) (1+§s )s

Solution (28) was first derived by Derjaguin and Muller(1967) for zero~Peclet—number
problem and the corresponding coagulation rate ' was

F =4n(a, +3,)Co DY n;, (36)
where 5, is the number density of particle j. We use Fy) to define the dimensionless coagula-
tionrate N, .ie.

Fy
N, = F‘,j” , 37

where the dimensional coagulation rate is actually the net flux of sphere j across the contact
surface r = a; + 4, enclosing the test sphere J, viz.

Fyon o - Tup BV G4 B Vop,) s, o9
Then,
2 il (. L By 1
Ny =g limy [ (ol @, /T )+ ZE sinddsde. (39)

From (39), (23), {25), (28)—(32), the asymptotic expansion for N, is found to be

N, =1+2C,8,P)/* + 0(Py'")

Fa?(l + 2} ]'” ([Faf(1+l)2 ]'”)
=142Ce B, —/——— | +ol | ———F— . 40
OBO[ 4Dg3) 4DS’) (40)

The first term in Eq, {40) is of course the pure Brownian diffusion result. the second term rep-
resents the leading term of the effect of the weak shear flow on Brownian coagulation. It is
always positive. The effect of weak shear is always to increase the coagulation rate. Similar to
the case of mass transfer, the increase is due to the increase of the overall concentration differ-
‘ence of particle j within the region s ~s, caused by the simple shear flow.

Y. THE RELATION BETWEEN THE COAGULATION RATE AND MASS TRANSFER RATE

As a; >0, A0, then C, 1, Eq. (40} reduces to

Fylime =4na,D""n,n+ﬂ.,( a.‘, 24 o 0 1‘”) 1)

If we consider 4, as the radius a of a spherical particle in the mass transfer problem, DY as
the diffusivity of the diffusivible quantity, s, as the concentration difference of the
diffusivible quantity between the surface of the particle and infinity, (41) agrees with the mass
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transfer rate (see the first two terms of the expansion (49) in Wen, Zeng and Wang, 1994).

The fact that the coagulation rate in the limit of the radius of sphere j becoming small
agrees with the mass transfer rate is remarkable, but is not a surprise. In fact, it is casy
to understand from the view point of a physical model for coagulation. When 10, a —=0,
the effect of spherej on the flow field due to the test sphere § immersed in a simple shear flow
disappears. and sphere j moves in the same way as a fluid point. Thus the flow field tends to
that produced by a sphere immersed in a given shear flow. As A0, Dy, tends to D' T, (450
is required). Thus the coagulation model formally reduces to the mass transfer model.

V1. COMPARISON WITH VAN DE YEN AND MASON'S WORK

van de Ven and Mason (1977) calculated the leading term of the effect of a weak shear
ambient flow on the coagulation rate of a monodisperse dispersion {1=1), and gave the ex-
pansion for the coagulation rate j as

= E’i 172 ry?
J=16nCq4 Ny D, b[1 + 2Coﬂu(D Y o1+ O(——D ), 42)
o 0

where N is the number density of the spherical particle, D, is the Brownian diffusivity for a
single particle. This is exactly the case with A= studied in this paper. However, the resull is
different from that given by {40) with A=1 by a factor 1 / V2 in the correction term.

In van de Ven and Mason (1977), the Brownian diffusivity tensor in the governing equa-
tion for the pair—distribution function is taken as half of the mutual Brownian diffusivity
tensor. To account for the mutual diffusivity, a factor 2 is added in the formulae by which the
coagulation rate is derived from the inner expansion of the pair—distribution function. This
assumes that the coagulation rate is proportional to 0. It is true for the first term in (42).
However, the second term is in fact proportional to VD o~ Thus, the coagulation rate is

overestimated by a factor V7,
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