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ABSTRACT

In terms of 34—year monthly mean temperature series in 19461979, the multi~level mapping model of neural
network BP (ype was applied to calculate the system’s fractual dimension Dy = 2.8, leading to a three—level model of
this type with / % j=3 % 2,k = 1, and the 1980 monthly mean temperture prediction on a long—term basis were pre-
pared by steadily modifying the weighting coefficient, making for the correlation coefficient of 97% with the
measurements. Furthermore, the weighting parameter was modified for cach month of 1980 by means of
observations, therefore constrcuting monthly mean temperature forecasts from January to December of the year,
reaching the correlation of 99.9% with the measurements. Likewise, the resulting 1981 monthly predictions on a
long—-tange basis with 19461980 corresponding records yielded the correlation of 98% and the month—te month
forecasts of 99.4%.
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1. INTRCDUCTION

Meteorclogy is concerned with aimospheric state and its change and the ultimate goal is
to offer weather information and prediction over a wide range of spatial / temporal scales
through intensive and extensive research for socioeconomic prosperity. It has been a major
concern of meteorologists to prepare element forecasts on a variety of scales, among which
monthly mean temperature and monthiy rainfadl fall into the scope of long—term forecasting
and bear intimate relation to possible drought and flood. The authors (1993} proposed a
scheme of a dynamic system’s recomstruction based on phase space continuation of
one—dimensional time series for monthly mean temperature prediction. This scenario is no
doubt applicable to the case of monthly precipitation. But in this article we investigate the
problem along a new line. The description of an intricate system by nonlinear interaction be-
tween elements with the consequent extensions—results derived recently in neural network
theory—undoubtedly provides a useful approach to nonlinear prediction research. For this
reason, an attempt was made to explore monthly mean temperature forccasting by virtue of
the neural network BP—type model.

1. OPERATION OF THE MODEL

, Neural network is a large—scale dynamic system,characterized largely by the ability to show
the overall effect of the network and to accomplish the parallel distribution of complicated
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information on a large scale. There exists a multitude of such models and only the BP—type
multi—level mapping version that is now in widespread usc is considered in this work, con-
sisting of a hidden~Ievel element responsible for feeding back result onto the hidden level with
the aid of least mean deviation to change the weighting coefficient matrix 3o as to realize the
“information input to product output™ operation as expected. The mode] is of usefulness to
nonlinear forecasting. In Fig. 1, X stands for the signal input level with X, being i—th com-
ponent of the input; ¥ for the hidden level assuming j number of (f < {); Z for the input level
with k& number of (x <), and & set to be unity for simplicity. We denote W, (W, ) as the
weighting coefficient between the input and hidden (the hidden and output) levels. It is seen
from Fig. 1 that there exist nodes of the input, output and hidden levels. The input signal is
fitst propagated forward to the hidden level node and, after nonlinear interaction {usually
represented by squashing function), the signal runs from the hidden to output nodes which,
subjected to nonlinear interaction again, comes out as the final result. The squashing Function
(SF) normally takes the form of S~type ike f{x) = — le — which s differentiatible on a con-
tinuous basis, of monotonous increment and saturation.

The components of neural clements of the same level are not interrelated and the ele-
ments of adjacent levels are associated by error revision of the weighting coefficient, i.e., by
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Fig. 1. Neural network 3—level BP—typa model.
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Fig. 3r Representation of $-type function.
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using the difference between the expectation and actual output of the elements for modifying
the parameter of the coefficient to reduce the difference.

Calculations are as shown in Fig. 1. The hidden level Y, is found by the input level X,
multiplied by the weighting #; yielding

Y=LaW,, o)
and the SF of ¥; in the form ¥,

|

LR @

The information transmitted from the hidden to output level is obtained by the hidden—level
¥, multiplied by the weighting W, ,

Z, = Ziji} (1))
7
for which the SF is in the form
~ 1
Z, =—— 4
E lge @

with the expected output assumed to be d, , we proceed as follows.
The weighting coefficient is revised using the back propagatiop of squared error. Set the
squared error function to have the form

E, =%(Z',c 4. ' )

Now, let AW, be the revised weighting coefficient (WC) Wij between the input and hideden
layers

OE,
AW, = — W 6)
and AW, be the coefficient W, between the hidden and output levels
iE,
AW, = — W . 7

For each calculation of the time series, the WC needs to be revised. Therefore, the WC of
the ni~th step has the revision as

AW, G ) = SAWG.D » @®

AW, 0, k), = i-‘iwg(j,k). , ®

where z =1, 2, »»« N — d, with N denoting the time series length and d the number of inde-
pendent coordinates describing the study system, defined by its fractual dimensionality D, .
After (n — d) calculations, N number of data in the series have passed through the operation,
which is referred to as a cycle. Generally, hundreds, even thousands or more of such cycles are
required to reach the needed value of the WC.

The WC has the form at the { + 1) cycle
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n-d aE
Wi fes = Wil +0(E ~ 55D - (10)
. : ~ aEk
Wil ey = Wal )+ (T — 5o a1

where # represents the learning rate.
UI. NEURAL NETWORK PREDICTION OF MONTHLY MEAN TEMPERATURE

1. Used in this study are the datasets of monthly mean temperature spanning 1946—1980
{Central Meteoralogical Bureau, 1974), with the 1946—1979 data (IN = 408) as the basis for the
model construction and WC revision, which are applied to forecast the monthly temperature
of 1980, followed by comparison of the predictions with actual measurements to assess the
forecasting.

The data 0 < x(¢) < 1 are used and part of it is illustrated in Fig. 3.

2. Following Yan and Peng (1993), the lagged continuation phase space 1= 2 is used to
compute the fractual dimensionality D, = 2.8 with the known basic time series (IN=408 for
the first 34 years). Thus we can predict the number of degrees of freedom (i. ¢., independent
coordinates) of the given dynamic system, with the bottom limit of | D, + 1| =2 and the up-
per of | 2D, + 1| = 6 so that the input layer of the model will assume i = 3, 4, 5, 6.

3. Initial values of W, and #, (n = 1} are taken by means of a random generator, with
(AW ), -, =0,(AW,), ., and n=0.15. After a large number of WC revision the relative er-
ror of 0.001 should be reached between the 408—th output and observation and then the re-
sulting WC is utilized to predict the monthiy mean temperature from January to December,
1980.

4. Since k=1and i=3,4,5, 6 are used for the model for the study system, i x j can
take 3x 2, 4x 2, 5% 2, 5% 3, 6x 3, etc. From the calculations one can se¢ that among these
versions, the 3% 2 model prediction is closest to the measurement. Table 1 presents the 1980
monthly predictions on a long—range basis in terms of the 3 % 2 mede] with different random
initiaf values W, and A, applied.
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Fig. 3. Part of the 1946—80 monthly mean temperatures,
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Table 1. 1980 January—December Monthly Mean Temperatures with Different Random Initial Values Used in

the 3x2Model
J F M A M I I A S O N D oumber
of cycles
obser. 21 32 70 139 202 244 263 247 213 167 119 21
pred.1 20 29 66 140 212 265 268 237 181 146 104 46 402
pred.2 19 28 63 141 218 267 268 231 176 148 107 47 286
pred.3 20 29 65 139 213 267 268 239 177 142 100 47 367
(Cf. Fig. 4).
3.28416, —2.09867, —5.37359
Note that for prediction 1, W, {i,))= ( )
—-3.76703, —0.01469, 2.69419
W,(j, k) ={—5.24629, 1.58751)
3.16490, —2.03741, — 529458
for prediction 2, W,{(}, j)=( )
—3.63203, —0.01197, 2.58302
W, (i k) =(— 520791, 1.48307)
3.26419, —2.08840, — 5.34298
and for prediction 3, W, (i, j)=( )
—3.74109, -—0.01371, 2.69705

W, (i, k) ={( —5.23790, 1.56939)

Note also that the solid line denotes a measurements—connecting curve and the three
broken lines the results of predictions 1 through 3.

(Cf. Fig. 5)
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Fig. 4. Comparison of the 3 x 2 model predicted monthly temperatures to observations (solid line)
with the results of predictions 1 to 3 shewn by broken lines.
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With the 35—years monthly temperatures in 1946—1980 as the basic dataset in virtue of
the scheme just used, the monthly temperatures of 1981 are tabulated as follows.

Table 2. Long—tsrm Prediction of Monthly Mean Temperatures of 1981

I F M A M J I A s 0 N D
obser, 0.0 4.0 10.3 15.0 0.7 250 84 274 20 143 838 33
pred. 0.2 35 9.6 14.6 1.2 244 273 258 187 1335 9.9 4.8
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Fig. 5. Monthly temperatures of 1981 with the observed (predicted) magnitudes given By solid
(broken) line,

5. To improve the accuracy of forecasting and serve as a correction, the 3 x 2 model is
used with the WC modified on a monthly basis for monthly temperature predmnon and the
results are summarized in Table 3.

Table 3. 1980 Monthiy Temperature Prediction with WC Modified on a Monthly Basis

] F M A M 1 ) A 5 0 N D
obser. 2.1 32 7.0 139 202 244 263 4.7 213 16.7 11.9 31
pred.4 20 32 7.0 139 199 243 265 246 215 16.9 12.3 15
pred.5 20 3.1 7.1 40 2006 243 264 246 215 16.8 12.2 34
pred.6 2.0 3.2 7.0 13.9 20.2 244 263 247 213 16.7 11.9 3.1

These values of this table arc utilized to prepare Fig. 6 where solid line denotes the ob-
served temperatures and broken lines the results from predlcuons 4,5 and 6. Because of their
close agreement these lines are hardly discernible.

Table 4. 1981 Monthly Mean Temperature Prediction

¥ F M A M I J A 5 o] N D
obser, 0.0 4.0 10.3 15.0 207 250 284 274 220 14.8 8.8 33
pred. 0.3 3.8 10.2 147 206 248 28.1 7.2 247 15.0 9.1 3.6

(CE. Fig. 7)
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Fig. 6. Comparison of oburgﬁony (solid line) to results from predictions 4,5 and b (broken lines),
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Fig. 7. Monthly temperature prediction. (broken line) in comparison 1o the observed (solid line).

IV. ANALYSIS AND DISCUSSIGN

It is an attempt to predict monthly mean temperature with the neural network BP—type
three layers mapping model. From the foregoing calculations we come to the following,

1. The fractual dimensiopality Dy = 2.8 is found from the monthly mean temperature
series of Nanjing. With the determination of & = 1, the form of the three level models depends
on i x j, for which a range of versions (e. g., 3% 2, 4% 2, 5x 2, §x 3, 6 X 3, etc.} is allowable,
After a bulk of computations the 3 x 2 model is found optimal with its prediction closest to
the observed, suggesting that the attractor of the system is set in a 3D model.

TaMe 5. Error Analysis of Long-range Prediction of 1980 Monthly Mean Temperatures

MAE* MRE MSD cC
pred.1 1.40000000 0.01861096 1.85472400 0.97933520
pred.2 1.74166700 0.03518327 224518000 0.97063240
pred.3 1.51666700 002230451 2.05588600 0.97450900

« MAE =mean absoluts érror; MRE = mean refative error;
MSD = mean squared deviation; CC = correlation coefficient.
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2. For the BP three layer version, the number of components of the input layer can use
its fractual dimension as the first guess. However, selection of the number of hidden nodes
can be done from experience, not following any theory.

3. Error analyses are done of the results from predictions 1,2 and 3 (for long—term pre-
diction of 1980 monthly mean temperatures) and 4,5 and 6 (for 1980 monthly mean tempera-
ture forecasting) and from both types of the 1981 predictions.

Table 6. Asin Table 5 Except for 1981

MAE MRE MSD CcC
0.50833333 0.02472585 1.31750000 0.98161859

Table 7. Error Analysis of 1980 Monthly Mean Temperature Predictions

MAE MRE MSD CC
pred.4 0.16666690 0.0100832 0.21602500 0.9997259%0
pred.S 0.15000020 0.00547727 0.16832530 0.99983250
pred.6 0.15000010 0.00713229 0.16832520 0.99984G70

Table 8. As in Table 7 but for 1981

MAE MRE MSD CC
0.01500000 0.0269372 0.24949494 0.99447204

The above analyses indicate that the long—term predictions of 1980 and 1981 monthly
mean temperatures have correlations of 97% and 98%, respectively, with the cbservations,
and with the corresponding figures of 99.9% and 99.4% for the month—to month forecasts,
which meet the needs of prediction.

4. For predictions 1, 2 and 3 the 3 x 2 version was based on the resulting sequences from
W, and W, of different initial values (» = 1) determined by a random generator. As shown
in Table 1, initial values of the weighting coefficients were obtained through different number
of cycles for modification to reach proper accuracy of forecast, but nevertheless their results
were comparable. This suggesis that initial weighting magnitudes are allowed to be taken
stochastically if the model and forecasting accuracy are defined. And the same was true of
predictions 4,5 and 6. Our study shows that the neural network BP—type multilevel modet isa
highly useful algorithm and a nonlinear optimization in which the usual gradient descent
technique is used, to which the addition of hidden level nodes will give rise to the increase in
the number of modifiable parameters, leading to still more accurate solutions. The neural
network can be regarded as an input to output mapping that means a highly nonlinear pro-
cess. If the number of input and output nodes is set to be i and k, respectively, then the nct-

work will be represented by the R' to R* mapping.
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