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ABSTRACT

Urification is both necessary and challenging for studying atmospheric particle systems, which are polydisperse
sysiems containing particles of different sizes and shapes. A general framework is proposed to realize the first order
generalization. Within this generalized framework, (1) atmospheric particle shapes are unified inte self-similar
fractals; (2) a self~similar particke is characterized by various power—law relationships; (3} by combining these
power~law relationships for a single particle with Shannon’s maximun entropy principle and some concepts in statis-
tical mechanics, unified maximum likelihoood number size distributions are of the Weibull form for atmaospheric par-
ticle systems. Frontier disciplines (c. g., scaling, fractal, chaos and hierarchy) are argued to provide potential “tools”

for such unification. Several new topics are raised for future research.

Key words: Unification, Self—-similarity, Power—law relationships, Fractals, Shannon's entropy. Maximum likelthood
distribution

L. INTRODUCTION

Further understanding of atmospheric particles and their systems calls for a unified
treatment. It has been traditional to identify several elements in the atmosphere; air
molecules, aerosol particles and hydrometeors (cloud and precipitation particles). However,
many issues related to the atmosphere require an overall consideration of effects from differ-
ent sources. For example, an ultimate understanding of the global warming requires taking
green house gases such as water ‘vapor and carbon dioxide, aerosol particles and
hydrometeors into account. Moreover, all the atmospheric particies interact non—linearly and
depend upon one another. Gas—to—particle coaversions are important sources of atmospheric
particles whereas particles are a link in the chain of the removal processes which returms gas-
eous pollutants to the earth’s surface (Twomey, 1977). These interactions are complicated by
the fact that some aerosol particles may work as cloud condensation nuclei (CCN) or ice
nuclei (IN) to form clend particles and evaporation of cloud particles may leave modified
aerosol residues in the air. Small particles (small acrosol particles or cloud particles) may clus-
ter to form large particles (large acrosol particles or precipitation particles) and large particles
may break up or evaporate into small particles. Hydromteors also may scavenge aerosol par-
ticles (raincut and cloudout) (Pruppacher and Klett, 1978). A summary of these interactions
is given in Fig. 1. Therefore, it is physically desirable to describe the atmosphere as a
self—consistent whole, rather than a collection of neatly independent and ultimately simple
pieces.
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Fig. |. Schematic show of inkeractions among different avmospheric particie groups.

On the other hand, as Maxwell’s dictum states, “The great desideratum for any science is
its reduction to the smallest number of dominating principles”, the parsimony of basic con-
cepts and models has been a target throughout the long hisiory of mankind’s search for an
understanding of the physical worid. Such economy, is a prerequisite for exploring
complexity, dictates unification.

Atmospheric “particles” covers roughly 10 orders of magnitude in size (~ 107 em of
molecules and their clusters to ~ 10' cm of hailstones), with each group of “particles” within
a limited range. At first glance, the wide size coverage, plus their shape multiplicities, seems Lo
forbid a unified treatment. But, atmospheric scientists have to face this “complexity” just like
physicists challenging the grand unification theory (a theory of unifying the four basic forces:
gravity, electromagnetic, weak and sirong forces). Previous studies have shown some promis-
ing results; details are referred to Liu et al. (1995), Liu (1994) and Liu, Mitchell and Arnoit
{1994). In those papers, discussed respectively were unified treatments of particle number dis-
tribution, of dynamical properties (terminal velocities) and of particle shapes. Also, rapid de-
velopment of some frontier disciplines {(e. g., self—similarity, scaling, fractals, chaos and
non—linearity) provides the potential to realize this unification. The purpose of this paper is to
propose a general unifying fremework by synthesizing and developing previous studies.

This paper is organized as follows. A summary of Liu, Mitchell and Arnott (1394) is given
in Section 2; a summary of Liu (1994) is given in Section 3; a summary of Liu et al. (1995) is
given in Section 4. The three parts are then synthesized and developed, yielding the general uni-
fying framework in Section 5. Implications are made in Section 6. Qualitative reasoning for
self—similar structures is made in Section 7, with emphasis on links with both self—similar at-
mospheric fields and models of colloidal aggregation. Section 8 is concluding remarks.
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I1. UNIFIED TREATMENT OF PARTICLE SHAPE

Atmospheric particles assume various geometrical shapes: Euclidean particles (e. g.,
spheres, spheroids and various symmetrical crystals) and “irregular” particles. Shapes of
hydrometeors are more complicated than those of aerosols because the coexistence and
interactions of both liquid phase particles such as c¢loud droplets and solid phase particles

- such as ice crystals. Such shape multiplicities are implicated by Lee—Mogono classification
scheme (Lee and Mogono, 1968), in which about 80 solid hydrometeors are classified. How-
ever, such qualitative description does not mect the requirements of further developments,
which calls for quantitative characterization. Furthermore, a unified treatment of particle
shapes requires an approach which can deal with “irregular” as weli as Euclidean particles.

Since the publication of fractal geometry (Mandelbrot, 1977; 1983), its ability for
quantitatively characterizing irregularity has been demonstrated by numerous studies in di-
verse fields (Mandelbrot, 1983; Pynn and Skjeltorp, 1985; Milne, 1988; Peitgen and Saupe,
1988; Avnir, 1989; Falconer, 1990; Sugihara and May, 1990). Further, fractal dimension can
be shown to be 2 generalization of Euclidean dimension by using self—similarity concept. This
means that atmospheric particle shapes, to first approximation, can be unified into self-simi-
lar “fractals”, with Euclidean particles as special cases (see Fig. 2). This issue was detailed in
Liu, Mitchell and Arnott (1994); and is briefly introduced as follows.

1. Unification of Particle Dimension

Self-similarity, or invariance against changes in scale or size, is one of the central con-
cepts in fractal geometry. Mathematically speaking, a power—law relationship, ¥ =ax”, is
seff—similar: if x is rescaled (multiplied by a constant), then y is still proportional to xt.

i
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, Fig. 2. This figure shows, from dimensional points of view, the possibility of unifying all aumospheric parti-
cles into self—similar fractals, with Euclidean particles as special cases. E represents an Euclidean dimension;
B represents a general seli—similar dimension. The subscript “projection” refers to the projection of a parti-

cle. The subscript “s* refers to the subsirate on which a particle is projected.
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The concept of self—similarity is Closely connected with our intuitive notion of dimension. A
one—-dimensional object, for example, a line segment, possesses such a scaling property. it can

be divided into N identical parts each of which is scaled down by the ratio D, =—% (Dis
length} from the whole. A two-—dimensional objects, such as a square, can be divided into
N self-similar parts each of which is scaled down by a factor D, = \"L_N A
three—dimensicnal object, like a sclid cube, can be divided into N little cubes each of which is
scialed down by a ratio D, =vQN=. With self—similarity in mind, the generalization of

Fuclidean dimension to fractal dimension is straightforward. A f—dimensional self—similar
ubject can be divided into A smaller copies of itself each of which is scaled down by a factor

D, = (la)

=

or

N= (3)gi . {1b)

Further, given a self—similar object of N parts scaled down by a ratio r from the whole, its
fractal diisension is given by

p=—tcl (o)

g (5, )
Eqy.(lv) provides a practical method for determining the dimension of a fractal, and such de-
fined fractal dimension is specifically called similarity dimension that equals to the gomon
Eulidean dimension for the Euclidean objects {Mandelbrot, 1983). Note that “self—similar” is

used to describe both the common self—similarity related to irregulasity and the Euclidead
that is called standard self—similarity by Mandelbrot {1983).

2. Refgtionships among Projections

A relationship between mass—~ and area~fractal dimensions will be very useful. Most at-
mospheric particles are embodied in three—Euclidean space. But most shape analyses are
done for projected particle images. For Euclidean particles, it is obvicus that dimensions of
projections depend on both projected particles and projecting substrate. Plane—projections
(projecting substrate is a plane) of a three—dimensional particle and a two—dimensional parti-
cle have dimension two; whereas a plane—projection of a one—dimensional particle still has
dimension one. On the other hand, when a projecting substrate is one—dimensional curve, a
three—~dimensional, two—dimensional and one—dimensional particles have dimension one. It
should be noted that in one unusual case, when a line is vertically projected inio a plane or
curve, the projection becomes a point and hence has dimension 0. This case is not treated.
These can be summarized into Eq.(2).

Eprojectiun = mjn(E; :E) 3 (23)

where E, ion Tepresents the dimension of its projection, E, represents the dimension of a
substrate, and E represents Euclidean dimension of original particles. This formula can be
generalized for self—similar fractal particles as

ﬁpmjech’un = mu:l(ﬁ, !ﬁ) » (Zb)
which indicates that the dimension of a particle projection will be the minimum of the
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Fig. 3. Relationship between fractal dimension and dimension of the two—dimensional projection of a

self—-similar particle.

original particle and the substrate. For example, the plane—projection of a particle with di-
mension § 2 2 has the same dimension with the substrate; a plane—projection of a particle
with B < 2 has the same dimension with the original particle. This general result will be useful
for inferring the original dimension of a particle from its projected dimension because most
particles are analyzed based on their plane—projections. For the shape characterization of at-
mospheric particles, §, is 2 since most of substrates are two—dimensional planes. Therefore,
Eq.(2b) can be simplified as

ﬁprojec‘tion = mm(z,ﬁ) » (26}
which is graphically shown in Fig. 3.
[11. GENERALIZED POWER-LAW RELATIONSHIPS

A power—law relationship, y = ax? , has been empirically used to characterize an atmos-
pheric particle; readers are referred to Liu (1994) and Lin, Mitchell and Arnott (1994) for a
detailed review about empirical power—laws. The following outline the major theoretical de-
rivations.

1. Theoretical Basis for Mass—, Area—, and Perimeter—Dimensional Relationships

Euclidean particles have power—law relationships between any pairs of mass (m), area
{A), perimeter (P) and a characteristic length. Taking a soild sphere as an example, the follow-
ing power—law relationships exist:

moeD? | (3a)
AxD? | (3b)
PxD , (3c)

where D is the diameter of the sphere (note: D denotes the maximum diameter for
nonspherical particles in the following).
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Similar conclusions can be generalized into irregular particles in terms of self—similarity.
For a self—similar particle with fractal dimension g, ,

we have
_ (DN _ m(D)
Or
m(Dy=u,, B | (4b)
wher
m(D)
xy, = 4c
ot %)
Similarly, for area we have,
AD)y=a, D% (4d)
ADy)
o, = . 4e
= DF (4e)
for perimeter P(D):apD“P \ (41)
_Py)
o, = Dg” . (4g)

The primary parts, m{(D;), A(Dy) and P(D,), are related to fractal generators
(Mandelbrot 1983), For example, for chainlike aerosol particles the generator is selected as
spherules whereas for ice crystals hexagonal shapes will be better.

2. Theoretica! Basis for Other Power—Law Relationships

Terminal velocity V,, defined by Eq.(5a) and Eq.(5b), is another important quantity in
studying atmospheric particles.

mg=F, . (5a}
F, =%pacdmf , (5b)
where gis gravity, F, is the drag force on the parlicle; p, the air density; C, drag

coefficient. The following are several arguments which lead to power—law relationships
among the terminal velocity and the characteristic diameters.

(1). Re—WDB number approach

Eq.{6) has been demonstrated for a particle moving in the atmosphere under gravity
(Mitchell, 1994; Liu, 1994).

R, =aW’ | (6)

[

A4

Lin, 1994) for the reason called WDB number instead of Davis number or Best number}; p is
kinematic viscosity of air; # = p, it is dynamic viscosity; g and b are constants depending on

Dv 2
where R, = T’ is Reynolds number; W =C,R: = gf" ™ p? is called WDB number (See
Ui

Dy
the range of flow regimes (Table 1). A combination of Egs.(4b), (4d), (6) and R, =T‘,

yields the power—law relationship
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Table 1. Valuesofaanda R, =a w* over Different Regimes

a b W

6.1967 % 107° 0.52 W10
0.01227 0.84 107" < W < 0.01
0.04 1 0.01 <W <100
0.0604 0.83 10.0< W < 500
0.2072 0.64 500< W < 10°
1.5052 0.50 W > 10°

Naote: Readers are urged to consult Liu (19%4) on which this Table is based.

Table 2. Summary of Formulas Showing Generality

General formulas Stokes’ regime Spherical particle
R, =aXx" a=004 b=1
m=ua, D m=n Db 2y =%P Pu
T
A=a, D% A=a, D% e =g b, =2
v, =1,,D'8’ *
27, Y Zgx 52.27
x, = "F( 32 ) o, = 0404;1( zm ) v T
Pl Pab Pakt
f,=b(F, +2-8,)—1 fo= (B, +2-8,0—1 #, =2
-1
DN . (D., )’ =1
= P —_ =
L=Pp o, D,
w-1
D, Y*F x:(D")z x=1
r= D, b,
N E: M _ P -
{5, A5 x
b
D, =pg-1D, Do =o, D, D, =Je, D,

2a
* The commonly—used formula v, = 7~ng: #IDi' is a special case when substituting x=p, (5:-—)

1
6a_ V7P B tI-Pu -1 G, N3 f
—n D 3 and D, =|— ] D71 .
Lap) np,

* »  Another existing terminal velocity formaula v, o D" in Newton's regime is also a special case of b = (.5,
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v, =2, D% | (7a}
where
%, Y
a, =ap| —— | , (7b)
g1,
ﬂ,=b(ﬁm+2~ﬂﬂ)~1=b(.ﬁ+2)~l . {7Tc)

By expressing terminal velocity in different wavs, general power—law relationships have
been derived among characteristic diameters (e. g., volume eguivalent diameter, dynamical
equivalent diameter, mobility equivalent diameter) and the dynamic shape factor. A summa-
rized table {Table 2) is given here. Further simplification of these formulas can be readily
made for self-similar particles by a combination with the relationships among projected di-
mensions (Section 2.2).

(2). Other equivalent approaches

In addition to the Re—WDB number approach, there exist another two equivalent ap-
proaches; using the following power—law relationships;

R, =a,Cy (8)
R,=a, Wi , (9a)
W,=C,R . (Sb)

Table 3. Relationships between Coefficientsin R, = aW* =a,Cf =a, B}

coeflicient ag a a by [ b

I 1-w
ag ag =a, ay =al-3% ag =ap-2
a=ay ¥ a=a a=al " ®
1-2% 1 1-2
a, ap =al-3 a, =al-% g =ap-

_ b __ 4

b By = by b= | BT

po o b

b T+2, | 2=° 1+ 35,

by b
8 e | M T | BT

The equi\‘ralénce of the three approaches can be readily seen from the relationships
among the coefficients (Table 3), each having its advantages: W is not an explicit function of
terminal velocity, W, is not a function of diameter for a spherical particle

2 1 . .

(W, =§?Pﬂ V.3, p, is particle density); a relatively larger number of Cd—Re data is
Pa

available. The physics underlining power—law relationships (6), (8) and (9) is explored in
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Liu (1995} by establishing relationships between #(b,b,) and fractal dimensions of flows
around a particle.

At this point, theoretical foundations for generalized power—law relaiionships have been
established for a single self—similar particle, which include classical Euclidean particles as spe-
cial cases. Next question is how to relate this single particle property to atmospheric particle
systems in which particles interact with one another.

IV. UNIFIED PARTICLE NUMBER S1ZE DISTRIBUTIONS

The Preceding sections concern a single particle. Then how about atmospheric particle
systems? Looking carefully at number size distributions of atmospheric particles, one may ask
the following questions. (1) Since atmospheric particles are produced by different mechanisms
such as gas—to—particle and bulk—to—particle conversions, why do their number size distribu-
tions exhibit similar shapes? (2) While atmospheric particles cover a substantial size range,
approximately 10 orders of magnitude, why do size distributions over limited ranges show
similarily? Regarding the similarities, readers are referred to Liu et al. (1995), in which these
questions were answered by introducing the Shannon’s maximum entropy principle (SMEP),
extending statistical mechanics and using generalized power—law relationships. [ts outline is
as follows.

1. Shannron’s Maximum Entropy Principle (SMEP)

Information theory, especially SMEP, has increasingly found applications. Full details of
this theory can be found in Guisu (1977) or other textbooks related to information theory. As
an illusiration, the continuous case is briefly introduced here.

Consider a stochastic system which is governed by some restriction conditions and char-
acterized by a continuous stochaslic variable y with the probability density function (PDF)
#(r)- p(y) has many possible realizations owing to fluctuations, and each p(y) corresponds to
one Shannon entropy H(y). SMEP states that under the condition that the Shannon entropy
H(y) achieves its maximum value H " (), its corresponding PDF, p* (y} will have the largest
probability to occur. This means that maximum entropy H * () corresponds to the maximum
likelihood PDF p ' {y}. Mathematically, we have,

J‘p{y)dy =1, (10a)

Jf& Mely)dy =F, , (k= 12;2m) (10b)

in which F, is independent of y, m the total number of restrictions, Eq.(10a) means that p(y)
represents PDF; Eq.(10b) means that the quantities f, (v} (£ = 1,2,+++,m) obeys the dynamical
equilibrium, suggesting that £, () bas some fluctuations. The Shannon entropy is defined as

Hiy}= —CJﬂU’)lnPU’)d)’ , (10¢)

where ¢ is a constant related 1o the unit used.
In has been shown that under the conditions above, the maximum likelihood PDF has

the form:
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* ____1—__ _ -
g U)‘chl,qz.---,q,,.)e"p( ,Zﬁff:(”)’ (10d)

where Z(g,.9,.4,.**.,q,, ) is defined as the generalized partition function, and can be ob-
tained by:

ﬂmﬂﬂmmJ=em(—§%ﬁ@) . {10€)

where g,(f =123, m) are conslants which can be calculated by means of Lagrange
multipliers.

Table 4. Canservation Laws, Power—Laws and Weibull Distributions”

. B.estriction
Conservation Law . Power—Law Weibull Distribution
Variable
. ¥ B -1 LI
general, X x . x=2 D} mDy=o g XD up( - TD i )
# B — 1 o, M B
mass, M m m=ea, D w(Dy=a, 8, MD" exp(— N D"')
= u,Dﬂ'
8 -1 T
momentum, T t=rmy, a, =27, a()=a, f THH exp(vTD ')
B=8.+8,
k= akD's‘

. 1 1 _ o, K
kinetic energy, X k= El'm',2 oy = iﬂ,.,ﬂf n(D) = a, i, KD 'exp( - tTD”‘* )
Be =B+

surface energy or £ -1 LY.
a A=a, DM n()=a, B, AD" exp(— D‘)
surface area, 4 N

#  These are only general results. Which conservation law used depends upon the specific problem in question.

SMEP relates the maximum likelihood PDF with the restriction conditions which are
natural laws governimg the system in reality.

2. New Concepts

CONCEPT 1, Restriction Yariable x. In reality, all the atmospheric particle systems are con-
trolled by some natural laws (e. g., energy conservation, momentum conservation, mass con-
servation) and their combinations. Because these physical laws generally correspond to some
restriction conditions in mathematical equations, the physical quantities that correspond to
the conservation laws are called restriction variables and denoted by x here. In other words,
the restriction variable x is analogous to the stochaslic variable y in information theory.
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CONCEPT 2. Atmospheric Particle Ensemble (APE). Similar to molecular ensemble in sta-
tistical mechanics, APE is defined to be composed of an arbitrarily large number of the sys-
tems satisfying the same macroscopic constraints but differing in their microscopic states
(number distributions}.

CONCEPT 3. Particle Number Spectrum Entropy Ep(x). Similar to Shannon entropy, if the
particle number distribution with x is denoted by n(x) which represents the particle number
per unit volume per unit x interval and the total number per unit volume denoted by ¥, then
probability density function is defined as:

ploy =" (1
The particle number spectrum entropy is defined as
E,(x)=— jp(x)lnp(x)dx . (12)

in which the unit related constant ¢ is omitted because it does not affect the result.
3. Assumptions

ASSUMPTION 1. Due to fluctuations and uncertainties, atmospheric particle systems may
have diffarent particle size distributions under the same initial conditions and governing laws.
But there exists one distribution which occurs with the largest probability.

ASSUMPTION 2. It is postulated that SMEP is also suitable for the particle number spec-
trum entropy. This means that the maximum particle number spectrum entropy,

H {x), corresponds to the maximum likelihood PDF p “ {x)y—hence the maximum liklihood
distribution 2~ (x} under certain restrictions.
ASSUMPTION 3. As a first step, we consider the simplest case where only one physical law

controls the studied atmospheric particle system. This means that only ope restriction variable
x is involved.

4. Theory
On the basis of above descriptions, a system theory on atmospheric particle systems can
be expressed as follows.
The restrictions which govern the system are:
f plx)dxe=1, {13a}
jn(x)dx =N, (13b}
J.xp(x)dx =X (13c)
Or
fxn(x)dx=NX’ﬂX R (13d}

where the restriction variable x may be energy, mass, momentum, étc., depending on the nat-
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ural laws governing the systems.
Combining Eqs.(13a) and (13c) with Eqgs.{13d) and (13e) yields the following entities
(Appendix A):

p*(x)=c,exp(— ¢, x) . (14a)
e=% (14b)

where £, represents the average X per particle, analogous to R,l—,}; (KT is energy per molecule;

K Boltzmann constant; T temperature in Kelvin degree) in the Maxwell-Boltzmann distribu-
e

KT)' Or the maximum likelihood distribution

. . R I

f =1 ( _
tion for ideal gases p (e) X7 6AP
(MLD) with x is

n” (x)=Ne, exp(—~¢,x) . {14c)

Furthermore, for atmospheric particle systems, the particle number size distribution is
customarily used instead of the distribution with x. Generally speaking, the restriction varia-
ble x is a function of particle diameter £ (for non—spherical particles, D means some equiva-
lent diameter), and is denoted by F(D):

x=F(D) . (15)
Hence the maximum likelihood size distribution is

n'(D)=Ne,g—£exp(A£xx) . (16)

Atmospheric particle shapes can be unified in a self—similar fractal with various power—law
relationships (Appendix B):

x=FD)=a D" . (7
Substitution of Eq.(12) into Eq.(11) yields,
n(D)=N, D" 'exp(—AD?) , (18a)
Ne=e,0, B N=0t, 8. X, (18b)
A=g a, , (18c)
g=g. . (18d)

V. A GENERAL FRAMEWORK

Three unified aspects have been addressed. First of all, atmospheric particle shapes are
unified as self—similar fractals, with Euclidean particles as special cases. Secondly, such
self—similar particles have generalized power—law relationships, say m{D) = «,, D% Finally,
a system theory is established by introducing SMEP into atmospheric particle systems. This
theory predicts an exponential form of particle number distribution with x. By using a
power—law relationship, x =« DPx | a Weibnll distribution, n~ (D)=N,D?" Yexp(— iD"),
is derived for any atmospheric particle sysiems controlled by a single conservation law. This
can be generalized into a particle system which is governed by several physical laws. In this
case, a multi-Weibull distribution will be derived. Although the first two aspects are for
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a single particle whereas the last one is for a particle system, they can be synergistically com-
bined to give a general unification framework (Fig.4). As shown in Fig. 4, within this general-
ized framework, basic assumptions are reduced to (1) a single particle is a self-similar fractal
and (2) an atmospheric particle sysiem obeys SMEP. Futher, involved are only two basic
equation forms: power—law and Weibull. This will reduce equation numbers and hence com-
puter time in modeling. Another advantage is its clear connection between macroscopic prop-
erties such as controlling laws and microscopic properties such as size distribution.

A further question is as to why and how self~similarity of a single particle and SMEF for
a particle system are related to each other. In other words, is there a higher unifying principle
to produce both self—similar peometry and SMEP? As pointed out by Schroeder (1991),
self—similarity is a unifying concept underlining fractals, chaos, and power—law relationships.
It is speculated thast the final resolution could be obtained by intuition and combining the
disciplines and / or concepts listed between the first and second rounded box in Fig.4, each of
which is a frontier in science. It is worth noting that it is just the scaling properties that make
the unification possible, which is analogous to the well~known principle of dynamical similar-
ity in fluid mechanics (Kundu, 1990). In the following, a qualitative arguments about
self—similar structure will be made. But, what leads to the coupling between a single self—simi-
lar particle and SMEP for a atmospheric particle system remains open to explore.

VI IMPLICATIONS

This generalized framework shows a number of encouraging points; results about size
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distributions are discussed. Table 3 gives a heuristic v iew of particle systems controlled by dif-
ferent physical laws. These equations reveal a close relationship between size distributions and
the four factors: controlling physical law (via x=F(D)==x, nf oy, particle shape (via x, and

f. ), total number concentration ¥ and total X, This becomes more apparent when Eq.(18) is
rewritten as

. X
(D)= =, B, XD* 1exp(—1N D“=). (19)

1. Shape Effects and Law Effects

As an illustration, shape effect is further discussed as follows. For the same controlling
law, & and X, size distributions vary with particla shapes. Fig. 5 is an idealized example of
shape effect by assuming that the controlling law is mass conservation and that
mass—dimensional relationships are employed. Regardless of its qualitativeness, it is evident
that size distributions widen with decrease in §,_, from 3 (such as spherical droplets) to 2 (such
as thin plate snow crystals) to 1 (such as needle). This suggest that we must be careful of ana-
lyzing size distribution data, especially when comparing data from different instruments.

Duriny the processes, laws controlling a particle ensemble may change from one to an-
other and this change will lead to change in size distribution. The law effects are similar to

shape effects since both changes are embodied in power—law x = o, LS

2. N Effects and X Effects

By keeping other factors conslant either N effects or X effects can be studied.
N obviously determines “slope” of a distribution and slopes will decrease with increase in
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N. X is related to both “slope” (with opposite effect to N} and “intercept”.

Generalized framework also provides explanations for (1) empirical power—laws widely
used for both aerosols and hydrometeors and (2) distribution similarity among atmospheric
particie systems.

VH. QUALITATIVE JUSTIFICATIONS ABOUT SELF-SIMILARITY

Although, to the best knowledge of the author, no literature about theoretical aspects of
hydrometeor’s self—similarity has been published, promising research has been done in two re-
lated areas: one is about “fields” in which particles are located and the other is various
aggregation models producing self—similar colloidal particles. Incorporation of results from
these relevant areas and a coupled aggregation model with self~similar “fields” may provide a
potential tool for exploring theoretically the self—similar structure of atmospheric particles.

1. Self—simifarity of *Fields”

Atmospheric particles are engulfed in a hierarchy of scaling * elements” . In terms of
scales, molecular Brownian motion and turbulent motions consisting of eddies with different
sizes are two “fields” directly related to atmospheric particles. Both phenomena are, in fact,
typical examples of fractals or self—similarities and associated with randomness of different
degrees, Further to larger scales in which Brownian molecules and turbulent eddies
embedded, there has been considerable evidence that various atmospheric fields (e. g., rain,
wind, clouds, temperature, and radiation fields} are fractals {Lovejoy, 1981; Lovejoy and
Mandelbrot, 1985; Lovejoy and Scherizer, 1985, 1986, 1990; Pflug et al., 1993; Schertzer and
Lovejoy, 1987, 1988, 1989; Tessier et al., 1993. Hereafter, these will be denoted by MeGill
group since most of the work were done in McGill University, Canada). Schertzer and
Lovejoy (1988) argue as follows. In geophysical fluid dynamics, the existence of scaling re-
gimes can often be argued directly from the dynamical equalions themselves: the only scales
associated with the Navier—Stokes equations are a largest scale of energy injection and a
small viscous scale where most of the dissipation occurs. [n the atmosphere these scales (along
the horizontal} are roughly of the order of thousands of kilometers and several mm,
respectively, allowing the possibility of a scaling regime over nine orders of magnitude in
scale. It is worth noting tbat scaling in atmospheric dynamics has been extended from
self—similar scaling into a generalized scale invariance by MiGill group. This second order
generalization in atmospheric particle systems is beyond this paper. In summary, in atmos-
pheric processes, scaling features for molecular motions, turbulence and larger scale
phenomena have been studied and identified. This means that atmospheric particles are ex-
isting in self—similar “fields”.

Also, in terms of scale, self—similarities of atmospheric particles fill the “gap™ between
molecular Brownian motion and turbulence, i.e., the gap between molecules of ~ 10 em in
size and the smallest turbulent eddy of ~ 107" cm. In this sense, the atmospheric particle sys-
tem is a level of the whole hierarchy (Fig. 6). This new *element” itself is composed of
sub—levels (aerosol, cloud, etc.) and they must perform some work within the whole
hierarchy. Also, elements of other levels especially the two nearest levels (inolecules and tur-
bulence eddies), must have influences on atmospheric particles. However, most theories on
particle diffusional growth emphasize molecular effects, e. g., based on classical transport
laws (Fick’s first law for mass diffusion, fourier law for heat diffusion) whereas the effects of
turbulence are “underestimated” . The hierarchical structure dictates the importance of differ-
ent turbulent eddies. This further suggests that the (non—linear) coupling bewteen statistical
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Fig. 6, The hierarchy of atmospheric “elements” . It should be noted that each level consists of sub—levels.
Scaling structures of other levels indicate self—similar structure of an atmospheric particle which is within an

“in—between” level.

mechanics, particle microphysics and atmospheric dynamics be studied from scaling point of
view. Readers are urged to consult Pattee (1973) and Wu (1991) for hierarchy theory.

2. Self—similar Structure Predicted by Aggregation Models

The other related area is aggregation of general colloidal particles. Research of fractal
structure of particles was initiated by Forrest and Witten (1979), who studied smoke particle
aggregates. Witten and Sander (1981) developed the diffusion—limited aggregation (DLA)
model. Since then much effort has been made to develop various aggregation models pro-
ducing self—similar structure. Readers are vrged to consult Meakin (1989) for a detailed re-
view. Potential physical mechanism underlying atmospheric particles of various shapes are re-
lated to various aggregation processes. Sander (1983) classified processes of growth by
aggregation into three regimes. If the growing object is always near equilibrium despite the
addition of new material then its internal structure and external shape will be describable by
ordinary equilibrium considerations such as single crystals with the well—known equilibrium
crystal shape. As we drive the system away from equilibrium we oftern find a new regime of
merphology. In this case, new length scales associated with the steady—state growth give rise
1o intricate patterns which can persist even for large objects. Examples of these are the beauti-
ful, feathery, dendrite shapes of snowflake growth. Even farther from equilibrium a whole
new regime can appear—that of disorderly growth with no scales at all. The remarkable fact
about this regime is that in some cases it is not merely amorphous growth but growth of scale
—invariant fractals. Physically, atmospheric particles, which cover ordered fractal (e. g., vari-
ous symmetrical crystals) and disordered fractals, e. g., “irregular™ aerosol particles and
hydrometeors, experience similar processes and hence theories and techniques can be intro-
duced into investigation of atmospheric particles.

The striking geometry similarity (self-similar structure) and distribution similarity
{Weibull form), among others, indicates that the functioning of atmospheric particles obeys
some unifying principles. The close relationship of both self—similar fractal and SMEP with
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frontier disciplines further suggests a higher unifying principle.
VIII. CONCLUDING REMARKS

A Generalized framework for atmospheric particles is established based on two unifying
principles, Characterization of particle shapes is unified by assuming that atmospheric parti-
cles can be generally considered as self—similar fractals. Particle number size distributions are
unified by Weibull distributions using power—law relationships, which bridges a self—similar
fractal and SMEP for a particle systen, assuming that SMEP can be applied to atmospheric
particle systems. The two unifying principles, in turn, reduce the number of equations: only
power—law and Weibull equations are needed. Pasrsimony in underlining principles leads to
economy in controlling equations, which in turn leads to higher efficiency of numerical mod-
eling, and hence to feasibility of investigating complex interactions among different particle
systems. Within this framework, four effects on size distributions are identified {shape effect,
Law effect, N effect and X effect).

Qualitative arguments about the mechanisms of self-similarity suggest that introducing
and coupling general aggregation models with a hierarchy of scaling “fields” may provide a
tool for exploring the self—similar structure of a single atmospheric particle and the higher
unifying principle. Identification of this self—similar structure will bridge the scaling gap
beween molecular Brownian motion and turbulence and hence extend scaling regimes pro-
posed by McGill group. Mechanisms behind such a hierarchy of self—similar structures and
interaction between different levels are future challenges.

The following should be noted before conclusion.

{1). This paper focuses mainly on theoretical development. The unifying ¢ principles”
(self-similar geometry and SMEP) still awaitwait for observational evidences. An instrument
which can simultaneously measure at least three quantities and a quantitative method to ob-
tain the maximum likelihood distribution from a family of distribution data must be devel-
oped before such evidence can be obtained.

(2). New challenges are whether the two unifying “principles” can be further generalized
into one higher unifying principle, and how the different levels of the whole hierarchy
interact. I speculate that final solution should cencern introduction of frontier disciplines and
new concepts (e. g., sef—similarity, scalling, fractals, chaos, hierachy and non—linearity).

Appendix A: Derivation of Equation (14)

Eq.(14) can be obtained by introducing two Lagrange multipliers g, and g,, and
maximizing the following Lagrange functional L:

p(x)dx + Q'zj‘ xp(x)dx . (A1)
¢

an o

o) In(x)dx + g, J

0

L{p(x), q,,9:)= _J.

0

Setting the first variation of L with respect to the unknown p(x) equal to zero, the following
result is obtained:

0=AL=J [—np(x)—1 +g, +q.x]Apdx . (A2)
0

By noting the fact that Ap is arbitrary, we have
—lnp(x)-1+q, +g,x=0, {A3a)
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or
pix)=explg, — Dexp{g,x} . {A3b)
A combination of Eq.(A3b) with Egs.(13a) and (13c) yields:

1
explg; —1) =3 =& .
1

— = -

sz_Xx x

Therefore,
p x)=e,exp{—¢,.x) .

Appendix B: Semi—quantitative Methods for Vindicating Distribution Similarity and Obtainjng
MLD

Justification of distribution similarity and SMEP for atmospheric particle systems calls
for 2 quantitative method to solicit MLD from a family of distribution data. Because no
quantilative method is available, semi—quantitative methods are introduced briefly here.

Table A, Skewness Deviation Coefficient (C,), Kurtosis Deviation Coefficient (C, ) and C, — C, Relationship for
Some Probability Depsity Functions (pdfs)

pdfs C, €y C, —C, relationship
oermal 0 a C.o=C, =0
exponential 1 1 C,=C, =1
. L
gamma T+p T+u oo =0
Webat 3q’ps — 690,72 + 2911’ 49°py ~12¢°p py + Maplp, — 124°0) — 6}
eibul *
H2qp; —piV’ 6(24p; ~ 5 )’
1 1 B 5 4 H
+3 w +6n° + 159 q

Jognormal (_’}__4__'}1. 8 ;5 *+ 16 L

Non—dimensional Method

In a series of papers {(Liu, 1992; Liw, 1993; Liu and Liu, 1993; Liu et al. 1993) a
semi—quantitative method has been developed based on the skewness coefficient £, and
kurtosis coefficient ', of number size distributions. As shown in Table A, for commonly
used distributions (e. g, normal, exponential, gamma, Weibull, lognormal) there exist known
C,—C, relationships which can be used as reference for judging the distribution pattern of
statistical significance. Each measured distrbution maps into one point in C,—C, graph.
Distribution similarity has been shown by means of C,—C, graph among number size dis-
tributions of raindrops (Liu, 1992; 1993}, aerosol particles (Liu and Liu, 1994) and cloud
droplets (Liu et al., 1995). The maximum likelihood cloud droplet distribution has been also
idemiified (Liu et al, 1995). A Very similar method was proposed independently by Yee et al.
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in studying probatility distributicns of pollutant concentrations in the atmospheric boundary
layer (Yee et al., 1993; Yee et al., 1993). They used the plot of fluctvation intensity
vs.skewness and kurtosis. It is interesting that distribution similarity was also found for con-
centration porbability distributions in their research. This agreement, in fact, suggesis the
possibility of unifying treatment from another point of view. Because both Liu’s and Yee’s
methods use a pair of non—dimensional statistical parameters, they are called
non—dimensional methods, It is worth noting that MLD will appear as a attraction point in
the figure and can be determined from the coordinate values of this point; readers are urged
to consult Liu et al. (1995) for detail.

General Scaling Method

Another candidate for studying distribution similarity study is general scaling method
developed by Torres et al. (1994) on the basis of previous work (Sekhon and Srivastava, 1970,
1971; Willis, 1984). They gave a general expression for raindrop size distribution,

n(D¥) =¥ g ( D

o) - (®1)

where ‘¥ canl be any integral rainfall variable although rainfall intensity R has generally been
used. For a given ¥, 2y and f, areconstants which keep PP has dimension of n(D,¥) and
Y™ has the dimension of D, g is a function that is independent of the value of ¥ and that
will be called the general distribution function. Once ay and By have been identified, an ex-
perimental function g is obtained by plotting the whole set of measured spectra on graph
y= %}ﬂvs. x =T%. The use of these coordinates has a scaling effect on the spectra,
making them comparable independently of both £ and ¥. In fact, p = g(x) is a renormalized
non—dimensional raindrop size distribution. It is obvious that this scaling technique is appli-
cable to other particle size distributions. Furthermore, this non—dimensionality makes it use-
ful for comparing distribution data from any atmospheric particle gruops. We must keep in
mind that for all the compared distributions the same scaling variable ‘¥ must be used. How-
ever, this technique needs to be modified before used te identify specific distribution because
it does not give any information about specific model distribution {¢. g., gamma, lognormal).
A combination of non—dimensional technigue with this technique may provide better results.

The idea began when the author was in Chinese Academy of Meteorological Sciences, PRC (CAMS) under the
support of National Natural Science Foundation. Special thanks 1o Professors You Laiguang, Hu Zhijin, Guo Enm-
ing and Chen Wuankui in CAMS, and Drs. W. Palrick Arnott, David L. Mitchell, Steve Chai, and Wu Jiaoguo in
Desert Research Institute. Drs. W, Patrick Arnott, David L. Mitchell, Steve Chai and Wu Jianguo are also acknow-
ledged for their efforts in improving the author’s English. Dr. Wu Jianguo introduced the hierarchy theory to me.

Anonymous reviewers provide useful comments.
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