Vol.13 No.2Z Advances in Atmospheric Sciences May 1996

Some Possible Solutions of Nonlinear Internal
Inertial Gravity Wave Equations
in the Atmosphere

LiGuoping (ZEWRT) and Lu Jinghua (S8
Chenpdu Insiitute of Metgorolopy, Chenpdu, 610041
Received January 19, 1995; revised Seplember 171, 1995

ABSTRACT

Tn this paper. the noalingar internal inerntial pravity wave equation is derived by the analysis method of phase
plane and is solved by integration method. The results showed that this nonlinear equation not only has crdinary soli-
tary wave sojution but alse has another extra—ordinary solutions, and the form of solution is related to stratification

stahility, wave velocity and direction of wave motion.
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1. INTRODUCTION

In the recent 30 years, the investigation on the solitary and cnoidal wave of the nonlinear
motion has attracted great interests in the atmosphere and ocean sciences. For the barotropic
fluid, Long (1964) did creative work. Under the condition of stationary and
quasi—geostrophic fluid on f—plane, supposing that the basic flow varies sfowly with latitudes
he discussed the barotropic fluid problem and obtained the solitary solution. Redekopp
{1977) investigated the sofiton of stratified fluid in the quasi—geostrophic potential vorticity
model and discovered that the Rossby wave satisfies the deformation KdV equation (i. e.
mKdV equation). Malguzzi and Malanotie~Rizzoli (1984) studied the nonlinear and station-
ary Rossby solitary wave under the basic flow with horizontal and vertical shear. McWilliams
et al. (1981) studied sirong nonlinear effect, and got solitary vertex solution. Chao and Huang
{1980} studied the cnoidal wave of barotropic atmosphere. Liu and Liu (1982) presented some
typical solutions of cnoidal and solitary wave, through transforming the nonlinear partial
differential equation to the nonlinear ordinary differential equalion by means of a
phase—plane method. Cheng (1993) reanalyzed the KAV equation of liu et al. and derived the
general solution of solitary wave by Bargmann potential method. He (1985) studied the
boundary problem of second order ordinary differential equation and his results showed that
the soliton exists in the atmosphere widely. In this paper, for a mesoscale synoptic system (e.
g. China South West Vortex), the KdV equation describing nonlinear internal inertial gravity
wave is given. Applying directive integration method, some typical solutions of KdV equation
are derived and discussed in detail.

1. THE DERIVATION OF KDV EQUATION

In the p coordinates, the equations decribing nonlinear internal inertial gravity wave re-
lated to the mesoscale synoptic system are in the form:




No.2 LiGuoping and LuJinghua 245

3—!+H%+v%+wg—;=—g—'[f+fv, (1
‘;—:'+u2"'+1.-§—;+mg—;=—%~fu, (2)
2—;‘ +§_; +§—;’ =0, 3)
Eg+u?+1f€g—cw=0, (4
where o = — (y, / pg + T / €p) represents the parameter of atmospheric stratification sta-

bility. other symbols are as usual. For simplicity, assuming &( )}/ 8y =0 (i. e. the disturb-
ances are not relative to p), combining Eqs.(4) and (5) we yield

duy u, du_ 00

ar +uax +wﬂp =% +fv . (6)

v ay &y o

E+u5_x+w$_ fu D

fu | dw _

ax e =0 (8)

2 fopy, @ [0 _

ﬁt(ﬁp)+u6x (ap)”ﬂ“"o' )
where 6, = Ro / p. For solving Eqs.(6)—(9), let

u=U) . v=¥{O), o=00), ¢e=00), (10)
where # = &x + np — vi. Substituting Eq.(10) into Eqs.(6)—(9), we have

(— v+ kU + a7 = — k@ +fV , (an

(—v+kU+nQy' = —fU , (12)

kU 4+ ny =0, (13)

n®(—~v+kU)+0,Q=0, (14)

where v= ke represenls wave frequency, cis wave speed. Assume the conditions of
determinant solution as follows

when 07
Uy " U,y (constant),t” 0, T 0, 70 . (15

With these conditions, we integrate Eq.(13) and take an integration constant equal to ze-
ro after considering expression {15), and yield

n= — kU (16}

Substituting Eq.(I5) into Egs.(11), (12) and (14}, after eliminating V and ®, the
differential equation with a single variable U is got:

b 2
we_ B R U
U i (1N
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Eq.(17) is a nonlinear differential equation. evidently, &/ = 0 is one of its balance points.
By expansion method of nonlinear term, I/ /{— v+ k) is expanded into Taylor's series

at Ll =10 ,1e.
v v, v U k.
—v+ iU v o 1—kUS Y vyl v (18)
Taking the first order approximation of Eq.(18), we yield
an + k2
U= U (19)
MV

Through the translations above, Eq(17) can be expressed as a linear differential equation
{i. e. Eq.(19)). This equation can be solved as follows.

2.1 Forfn® + 5, &* > 0 (i. e. the stratification is stable or weakly unstable), we have

2 2 2172 2 2 3142
. ‘o k . . - +o k7
U=c¢| cos(‘iﬁmz—ﬁ,_r‘-”f) 6+c, sm(f——?TL) e, (20)
ny aty

which represents the linear internal inertial gravity wave.

22 Forf'n™ + a, & <0 (i. . the stratification is strong unstable), we have

2 2 25172 2 2 28172
_ ek — —g. k
U=e¢! exp[(i%) 9} +el exp[ - (_Ll{l-ﬂ—) 9] . (21)

nv ny

where ¢, ,c2 ,c; and ¢, are all integration constants, they could be determined by the

conditions of determinant solution.
The purpose of this paper is to discuss nonlinear characteristics of Eq.(17), therefore we
take the second order approximation of Eq.(18):
4 v k.2
=Y _ &g 22
—v+ kU vyt v (22)

Substituting Eq.(22) into Eq.(17) vields

22 2 3
+o,k 4
gr= L ISR GE 2%

Y nv

Differentiating Eq.(23) with respect to f}, we get

20,4’ w4t o, k*
v+ 22 gy =0 (24)
nyv i

Letting a = cr,,k" SR b= (,fzn2 + asz)/’ n*v’, then Eq.(24) can be rewritten as
U+ 22U+ 50 =0 . (25}
Eq.(25) is an ordinary differential equation corresponding to the famous KdV equation.
Neglecting stratification effect, i.e. a =0, or o, =0 (neutral stratification), the nonlinear

wave disappears, i. e Eq.(25) would degenerate to a linear equation (similar to Eq.(19). lis so-
lution was discussed above.
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II. SOLVING OF THE NONLINEAR INTERNAL INERTIAL GRAVITY EQUATION

There are some methods solving the KdV equaltion, e. g. the expansion of nonlinear term
method, Backlund translation method, inverse scattering method, Bargmann potential meth-
od. singular perturbation method, reductive perturbation method and so on. In this paper, we
are going to solve Eq.(25) by a simple method, different from the methods mentioned above,
i. e. not directly solving the KdV equation as usual method but solving its lower order equa-
tion {i.e Eq.(23)). For general KdV equation, the expression same as Eq.(22) can be obtained
only after integrating it. Multiplication of (23) by {7 yields

U7+ al? U +h’U =0 (26)
or
dU d (duy\ . dU, . ,dU, _
d()d@(afﬁ?)”dﬂ“ Tog =0 n
Integrating Eq.{27) with respect to d, we have
14 gg)z ﬂ_(ez il 2)
Zdﬂ[(dﬂ ]+d9 3V U 28)
«Or
1(dUN? fas boa_ .
2(d9) TV AU 29)

The integration constant can be determined by expression (15} as follows:
2a

e=3 U +bU e =2¢5) . 30

Under /)y = —b/a,.e. Uy = — v(fzn2 + apkg)/q £, Eq. (29) can be wrilten as

(5’{%)‘ = 23—"(0'3 U+ - U, 31
and the right hand of Eq.{30) can be rewritten as
23—“(113~U’)+bw§—UZ)=(U+A)1(BU+D), (32)

where d=h/a=—U,. B=—2a/3,D=d’c/b=b/3
Therefore, we take square root of Eq.(31) after considering expression (32), and integrate
it, thus yield

{7 .
————=r 10, 3
J‘(U+A)‘JBU+D ¢
where ¢~ is integration constant. Assuming F = U + 4, Eq.(33) can be rewritten as
__LdF—__. =¢' 18, (34)
PV BF + (D — 48

3.1 If b — AB <0, ihe intergration of Eq.(34) is
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172
2 BF+(D~—AB) M
ta = 4
ROT Darc n[ B—D ] ¢ g . (35)

Regularizing Eq.{35), we have one of solutions of KdV equation as follows:

U= _% +u£B;D)tanl[—A—u—(c' iﬂ)} , (36)
. 2
1.
o =
U =% -l-%laltanz[ o e iﬂ)] . (37)

Because the origin of coordinates can be moved along # axis, taking ¢* =0, yield

v N -t ek
U= - -30,tan [_———L—(f" d )0]

T2 2 %)
Letting N =/°n’ +a, k*, this solution can be rewritten as
YN 3»N2 (\J -~ ) (39)
20,k 20, Zny

Evidently. this solution does not accord with the conditions of determinant solution {i.e.
expression (15)), therefore it is an extra solution {i. e. nonsensical solution) which will not be
discussed in this paper.

32IFD—AB>0,ie.3b>0,0r3( n+0,k’)>0,1e
22
7> L8 or N0, (40)

which shows thal the stratification is weakly unsiable or stable, then integrating the left hand
of Eq.(34) yields

i *JB’F+(D AB)y —VD— 4B —eT

VD18 "NBF+(D-A4B) +VD—AB to. @b

321 IYBF+(D—AB) —vD— AB >0 in Eq.(41), we may derive F>0or U >

—~&/ a=U,.where I, is the minimum of /. Then, Eq.(41) can be rewritten as

anﬁFﬂD—AB)—w‘D-AB _ND=AE ' 8. (42)
VBE+(D—A4B) +VD - 4B

or

VBU+D -VD-4B =ln|:\fBU+Dr\fD—AB:r @3

{=1In
TN TBL D +VD AR JBU + AB

where { =v D — AB'(c " +#). Especially. we want to point out that the sign of VBU + 4B
in expression (43) does not affect the value of the right hand of expression (43}.

Because of I/ + 4 = F>0, we have B> 0, iie. —2a/3>0 when (BU + 48)>0. Ac-
cording to a definite value, it would have the following conclusions: For g, >0,v<0;
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Fig. 1. The first type of wave solutions

for o, <0,v>0 ie the disturbance propagates westward in the stable stratification; on the
other hand, the disturbance propagtes eastward in the unstable stratification.
For expression {44), we have

gzlr«fBU+D-\(D—A3 L JBU+ 48 (44)
2 VBU + AB ) 2 \IBUH) Np—

Lorrr_ wprzy_ oa b ND—AB

2(9 € ) S!ﬂh2 m - (45)

Through appropriate mathematical translation, one of the solutions of KdV gquation
can be obtained as follows:

_(D—A4B 1L
U= 3 csch 2 A4, {46)
or
= 23 en?é -
U 2 csch 5 s “7)
i.e.
B2 («E ) . b
F— 2% ~ + &
U [ csch [ 3 {c & | — 2 (48)
By the method as 3.1, the orgin of coordinates can be moved along 6, so that ¢ *t =0,
and considering that U/, = — b/ 4 and csch’ @ is not negative, we have
(2.2 2
3 ( fiat +a k )
F=f 42 AESLI A
U=U, +3 Uyese - B (49)

or
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Al A A
-&—‘ *M;csch“LG . (50)
o,k 20,k 2nv

r

= -

The solution as expression (50) is discontinuous at & = 0. [is shape is shown in Fig. L.

At #=0 (ie. the orgin point), function csch’f is discontinuous, it would represent the
weather of vortex eye. Il is known that there is an eye structure in the center of tropical cy-
clone. Recently, the meteorologisis in U. S. A. have observed the similar structure in the
model expeiments for the genesis and development of midlatitude cyclone with computer.
Moreover. based on the first type of solution and the weather facts above, we could infer that
there may be an eye structure in the center of anticyclone {i.e. high pressure, when U, < 0}. Of
course, this inference should be testified by the pew discovery from the weather observation
and analysis. for example, the satellite cloud pictute and mesoscale weather map.

322 IfVBF+(D—AB) —VD—AB <0, then U+ A4<0,ie. U< —-B/ A=Y,
therefore — 4 / a is the maximum of L/,

Similary, letting { =V D — 4B (c' " + 8) yields

ra YR - AB —NBU+D VD—AB —NBU+D | 51
T ND-—AB +VBU+D Y —BU— 4B ‘
Through simple mathematical translation, we yield
{ | ND—AB-YBU+D _tlp v —BU— 4B (52)
2 J-BU-4B ' 2 Np-aB-VBU+D
v _ran s + —_
l(E"""‘f‘E "”')=Ch£ =__U_B_ i (53)
2 2 N —BU—AB
Finally. we get
. b 3 2§
R = 54
U a +2a sech 3 {54}
By the method similar to above, we get another type of solution
F 2 32 2
iy 3y (_fa_tL‘L ) 55
U=, ZUDSGCh T 8. (33}
or
e 2 (2
U= _ 1JV3 + 3VN3 Sechl N B . (56)
a,k 2o,k 2ny

1t is the lypical solution of the KAV equation, i. e. solitary wave solution.
Assume U and 4 to be the amplitude and width of solitary wave, respectively. For the in-
ternal inertial gravity solitary wave, we have
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N2

T

,-_36

= (57)

and
_ 2unkc

i e

which indicate that &7 " and 4 are related to both wave speed ¢ and stratification stabitity o,
The dispersion relationship of internal inertial gravity solitary wave is greatly different from
that of linear internal inertial gravity wave. In the stable stratification, ¢ > 0 i.e the wave
moves eastward; in the unsiable stratification, ¢ <0, ie. the wave moves westward,
Obvicusly, the wave speed is related to the wave number, the siratification stabitity and the
wave ampliutude {as shown in Fig. 2). From Eq.(58), the amplitude of internal gravity soli-
lary wave is proporlional to its wave speed. Hs wave width is proportional to its wave speed

and inversely proportional to stratification (JF ). The results show that the larger the
amplitude of wave is, the wider the wave is and the quicker the wave moves. In addition, the
more slable the stratification, the narrower the wave.

The analysis of solilary wave associated with weather facts may be as follows. It is gener-
ally considered that thundery weather in summer is caused by mesoscale systems, such as
cumulonimbus. In the view point of wave, the internal inertial gravity wave is one of the main
factors in this weather processes, If solitary wave enhances (it is shown that wind speed in-
creases, vertical motion strengihens and so on), the wave motion speeds up. In addition, the
more stable the stratification, the weaker the system. These features all accord with the actual
situations. If £ =0, i.c. the inertial effect is neglected, the results were already shown by Liu
and Liu (1982).

1V. CONCLUDING REMARKS

In this paper, we investigete the nonlinear equation describing the internal inertial gravity
wave. By using a direct integration method, two types of analysis solutions are obtained. The
results show that for the ordinary differential equation corresponding to the KdV equation,
there is another solution besides the solitary soluiion. We not only attend to the mathematical

U
A

Fig. 2. The second type of soiutions (i.e. soliton solution).
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form of various solulions in this paper, but also discuss the physical fealures of them,
Furthermore, these resufts would make us understand characteristics of the KdV equation
and the solitary wave and mesoscale weather system more deeply.

The famous characteristics of the KdV equation are that there is a solitary solution, how-
ever, it only represents the special nature of KdV equation (Xue and Guo 1993). Specially, we
must indicate oul that the solving method and results are generally significant not only for the
nonlinear internal inertial gravity wave, but also for the KdV equation describing other
nonlinear waves. Besides the solitary wave, other wave solutions would represent some
synoptic systems and weather phyenamena which are not known well up to now. It will be
discussed further in the next paper.

We would like 10 thank Professor Zhang Qingde for his helpful discussion on mathematics.
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