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ABSTRACT

The generalized adjoint property and adjoint matching condition for systems that contain discontinuous on / off’
switches ar¢ derived by a perturbation analysis of the Lagranging-form costfunction.
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I. INTRODUCTION '

Discontinuous on / off switches often occur with parameterized processes in atmospheric
models. As shown by Vukicevic and Errico (1993), parameterized on / off switches can pro-
duce spikes in the perturbation tendency terms and these spikes cannot be captured by the
classic. tangent linearization. In terms of generalized function, these spikes manifest
delta~functions in the tangent linear equation and their *transposes” are delta—functions in
the associated adjoint equation (Xu 1995a, b, hereafter referred to as X95a,b). Since these del-
ta—functions were previously ignered in the conventional applications of the classic adjoint
method, the associated discontinuous jumps of the tangent linear variable and adjoint varia-
ble at the switches are neglected. Because of this, significant errors could be introduced in the
computations of the costfunction gradients.

The discontinuous jumps of the tangent linear variable and adjoint variable can be des-
cribed by their respective matching conditions, In X95b, the tangent linear matching condi-
tion was derired by a perturbation analysis that considers the variation of the switch point;
the adjoint matching condition was derived from the generalized adjoint property ot, say, the
adjoint property between the generalized tangent linear operator and adjoint operator; and
the generalized adjoint property was derived from the generalized tangent Linear and adjoint
equations that contain delta-functions. The purpose of this note is to show that the general-
ized adjoint property and adjoint matching condition of X%6b can be also derived by 2
perturbation analysis of the Lagrangiap—form costfunction. The medel equations and
costfunction formulations are presented in the next section. The detailed derivation is given in
Section 3.

1I. MODEL EQUATIONS AND COSTFUNCTION FORMULATIONS

A spatially discretized model used in data assimilation can be written into the following
vegtor form:
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% = Flx.1) , M
x(0) = x, 2)

where x = x(x,,2) is the model's state at time 1, X, is the initial state, and F can be a nonlinear
function of (x,r). For simplicity, we assume that during the data assimilation period [0,T)
there is only a single switch at ¢ = 1 in association with the following threshold condition:

c[x(r), 112 Olor < @) for on state (off state) . : (3)
At this switch point, F has a discontinuous jump and the amplitude of the jump is given by
G=F2(X,T+)_F1(X,f_) I (4)

where F,{x.7, } and F,(x,7_ ) are the lefthand limit and righthand limit of F, respectwe]y
The costfunction can be defined as follows:

Hxg) = I Dix(x,. 1), 1}t , (5)
s

where D measures the discrepancy between the model state and observation. The objective is
to find the optimal estimate of the initial state x, that minimizes J under the constraints of
(1)—{4). The minimization problem can be reformulated into an unconstrained form in asso-
ciation with the following Lagrangian—form costfunction:

T - T
JL(x0)=I {D(x, t)—nr-ﬁ —Fl(x,r)]}dt-#.{ {D(x, 1)
o Ty

— T[22 B,k 0t ®
dr .
where the vector Lagrangian multiplier & defines the adjoint vector, and ( Y represents the
transpose of { ).
1. PERTURBATION ANALYSIS AND MATCHING CONDITIONS

For a small perturbation &x, in the initial state, the leading order variation of J; can be
obtained as follows: '

8J, =84, + 84, + 61, + 61, . %)
where
j { aF (x 0 6D{x ‘)]’}axdr+I {
+ aT"FZ;:‘ L {“’5:’ DT L oxdr | ®)
60, ={D{x,7_)—alr_ )T[dxf;_ ) _ F,(x,t o —{Dlx,z,)
—ale, )" [""‘(”) —F,fx, 7, )}t . ®)

J,=ar, ) ox(r,)—a(r ) ox(z_) , (10}
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67, =207 ox(0) - () Sx(TY , ‘ (1)
and 3z is the variation of the switch time. The adjoint equation requics that the integrand in
(8) vanishes over {0, ¢_ ) and (¢, , T], and this gives 47, = 0. ]t is also obvious that §J, =0,
because D(x, 1) is continuous at ¢ =t and the state vector X satisfies the model’s equation (1)
on both (Jefthand and righthand) sides of 1. As shown in X95b, the matching conditions for
the tangent linear and adjoint vectors should satisfy

at Y ox(z_Y=alt, Y onlc,), {12)

and this makes 8J, = 0. Finally, with o(7) = 0 for the adjoint vector, we have
ar, =20 éx, or V. J, =20 . (13

This shows that the gradient of J, with respect to x,, is given by a(0)—the adjoint vector val-
ue at i =0, This vector value can be obtained by backward integration of the adjoint equation
with the initial condition a{7) =0 and a matching condition satisfying (12) at the switch
point.

The above analysis shows that ([2) is the desired condition to ensure the adjoint
formulation of the gradient in (13), although the analysis does not give by itself the specific
forms of matching conditions for the tangent linear vector and adjoint vector. As shown in
X95b, (12) is the generalized adjoint property at the switch point in association with the gen-
eralized tangent lineat and adjoint operators, and the generalized adioint property can be ex-
pressed explicitly as a whole (over the entire period of data assimilation) by the resolvents of
the gencralized tangent linear and adjoint operators. Through (12), the matching condition
for the adjoint vector is tied up with the matching condition for the tangent linear variable.
Note that (7)—(11) are similar to (13} of Baoc and Warner (1993), and these results wers pre-
viously used by Bao and Kuo (1995), but the generalized adjoint property (12) was unnoticed.

The matching condition for the tangent linear vector can be derived by analyzing the va-
riation of the switch point caused by the concerned perturbation, and the detailed derivations
are given in X95b. Here we only need to show the result jsee (3.9) of X95b):

dx(r, )=+ Axi(r_ ), (4

where 1 is the unite matrix, A= G(V,0)" /|de¢/ de)_ is the jump matrix, and Jdc / dt} _
=|ac / a1+ (dx / ATV ye| _ =|c/ 82+ F] V | _ is the absolute value of the total time

derivative of ¢ at =1t _ (lefthand limit). Substituting (14) into (12) gives the following
matching condition for the adjoint vector:

alr_)=A+AThk,). (15

This matching condition is the same as in (4.4) of X95b but different from {2.2) of Bao and
Kuo (1995).

To trigger an on switch, ¢ must increase to the threshold vtlue (¢ =0) according 1o (3),
so |de / dt| _ ={de 7 dt)| _ >0 for the on switch. As explained in X96b, the on switch (or
off switch) is normally determined by the last exceeded (or first not exceeded) threshold condi-
tion. In Bao and Kuo (1995), a vector threshold condition was used and all the component
threshold conditions were required to be simultaneously satisfied at the switch point for both
the reference and perturbed solutions. This imposed unrealistic constraints on the admissible
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variations of the tangent linear perturbation. Thus, a vector threshold condition is
inconsistent with the situation in an atmospheric model, although the same type of vector
equaliy was used as interior—point constraints in (3.5.1) of Bryson and Ho {1975) for engi-
neeting applications of optimal control theory. When a switch is triggered simultaneously by
several threshold conditions, the sitnation becomes complicated and requires certain special
considerations for the application of the matching conditions (14)—(15). The details are be-
yond the scope of this note.
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